НЕЛИНЕЙНАЯ ИНТЕРПОЛЯЦИЯ


Рассмотрим нелинейные быстроменяющиеся функции. Пусть дана таблица значений некоторой функции y=f(x) вместе с конечными разностями:

xk yk Dy0 D2y0 D3y0
 
   
     

Пусть требуется вычислить у(0,5). Очевидно, это значение лежит в диапазоне (1;11). Используем интерполяционный полином Ньютона:

Результат весьма далек от ожидаемого, так как этот ряд содержит быстровозрастающие члены и совсем не похож на сходящийся.

Как интерполировать такие функции? Использовать более подробные таблицы? А если их нет? Универсального рецепта не существует, но для каждой конкретной функции часто удается найти свой способ интерполяции, дающий приемлемую точность.

Для этого, выяснив качественное поведение функции (или зная ее физический смысл, или сравнивая ее поведение с известными элементарными функциями), стараются подобрать такое преобразование переменных h=h(у) ; x=x(х), чтобы в новых переменных график функции h(x) мало отличался от прямой линии на протяжении нескольких шагов таблицы.

Затем составляют таблицу hi=h(xi), интерполируют по ней и обратным преобразованием находят у=у(h).Этот прием называют методом выравнивания.

В рассматриваемом примере делаем замену x=х; h=lg y и составляем новую таблицу:

xk hk Dh0 D2h0 D3h0
1,0414 0,0064
1,0414 1,0414 0,0064  
2,0828 1,0478    
3,1306      

 

Первые разности мало отличаются друг от друга – это говорит о том, что выбранная зависимость h(x) близка к линейной.

Проводим интерполяцию по интерполяционному полиному Ньютона: .

Таким образом, h=0,5203, у=100,5203 » 3,314.



Дата добавления: 2020-10-25; просмотров: 518;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.