Решение уравнений в частных производных.


К уравнениям в частных производных приводят задачи газодинамики, теплопроводности, переноса излучения, электромагнитных полей, процессов переноса в газах, и др. Независимыми переменными в физических задачах обычно являются время t, координаты , скорости частиц . Пример – уравнение теплопроводности

, (17)

где U ­– температура, – теплоемкость, – коэффициент теплопроводности, q – плотность источников тепла.

Для решения дифференциальных уравнений в частных производных применяется сеточный метод, суть которого – в разбиении области, в которой ищется решение, сеткой узлов заданной конфигурации, после чего составляется разностная схема уравнения и находится его решение, например методом разностной аппроксимации.

Рассмотрим в качестве примера одномерную задачу, близкую по смыслу к (17):

. (18)

Здесь 0 ≤ xa, 0 ≤ t ≤ T.

Граничные условия:

Для одной и той же задачи можно составить много разностных схем. Метод разностной аппроксимации заключается в том, что каждая производная, входящая в дифференциальное уравнение и краевые условия, заменяется разностным выражением, включающим в себя только значения в узлах сетки.

Введем равномерную прямоугольную сетку по x и t с шагом h и τ соответственно и заменить производные соответствующими разностными отношениями. Тогда

. (19)

Здесь 1 ≤ kN-1 – число точек по координате x; 0 ≤ mM – число точек по координате t. Число неизвестных в (19) больше числа уравнений, недостающие уравнения выводятся из начальных и граничных условий:

; 0 ≤ kN.

; ; 0 ≤ mM.

Схема (19) содержит в каждом уравнении несколько неизвестных значений функции. Такие схемы называют неявными. Для фактического вычисления решения следует переписать схему так:

, где 1 ≤ kN-1.

; . (20)

Теперь схема представляет собой систему линейных уравнений для определения величин ; правые части этих уравнений известны, поскольку содержат значения решений для предыдущего индекса времени.

 

Другим вариантом решения сеточной задачи является использование интегро-интерполяционных методов (методов баланса), в которых дифференциальное уравнение интегрируют по ячейке сетки, приближенно вычисляя интегралы по квадратурным формулам.


Приложение 1.

Случайные величины в компьютерном моделировании.



Дата добавления: 2021-09-07; просмотров: 288;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.