Метод Рунге-Кутты IV порядка.
Данная схема является наиболее употребительной. Здесь в разложении функции в ряд Тейлора учитываются члены до h4 включительно, т.е. погрешность на каждом шаге пропорциональна h5. Для практических вычислений используются следующие соотношения, обобщенные в данном случае на решение системы ОДУ:
, где i = 1…p, p – число уравнений в системе.
; k – номер точки, для которой осуществляется расчет;
;
;
.
К достоинствам метода следует отнести высокую точность вычислений. Схемы более высокого порядка точности практически не употребляются в силу своей громоздкости. Также немаловажно, что метод является явным, т.е. значение yk+1 вычисляется по ранее найденным значениям за известное заранее число действий.
Все представленные выше схемы допускают расчет с переменным шагом. Например, шаг можно уменьшить там, где функция быстро изменяется, и увеличить в обратном случае. Так, метод Рунге-Кутты-Мерсона позволяет оценивать погрешность на каждом шаге и, в зависимости от полученной оценки принимать решение об изменении шага. Автоматический выбор шага позволяет значительно сократить время вычислений.
Дата добавления: 2021-09-07; просмотров: 275;