Формула прямоугольников.


Если известны значения функции f(x) в некоторых точках x0, x1, … , xm, то в качестве функции “близкой” к f(x) можно взять многочлен Р(х) степени не выше m, значения которого в выбранных точках равны значениям функции f(x) в этих точках.

Если разбить отрезок интегрирования на n равных частей . При этом:

y0 = f(x0), y1 = f(x1), …. , yn = f(xn).

Составим суммы: y0Dx + y1Dx + … + yn-1Dx

y1Dx + y2Dx + … + ynDx

Это соответственно нижняя и верхняя интегральные суммы. Первая соответствует вписанной ломаной, вторая – описанной.

Тогда или

- любая из этих формул может применяться для приближенного вычисления определенного интеграла и называется общей формулой прямоугольников.

 

Формула трапеций.

Эта формула является более точной по

у сравнению с формулой прямоугольников.

 

 

 
 

 


Подынтегральная функция в этом случае

заменяется на вписанную ломаную.

 

y1 у2 уn

a x1 x2 b x

 

Геометрически площадь криволинейной трапеции заменяется суммой площадей вписанных трапеций. Очевидно, что чем больше взять точек n разбиения интервала, тем с большей точностью будет вычислен интеграл.

Площади вписанных трапеций вычисляются по формулам:

После приведения подобных слагаемых получаем формулу трапеций:

 



Дата добавления: 2017-03-12; просмотров: 1671;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.