Формула парабол (формула Симпсона или квадратурная формула).


 

Разделим отрезок интегрирования [a, b] на четное число отрезков (2m). Площадь криволинейной трапеции, ограниченной графиком функции f(x) заменим на площадь криволинейной трапеции, ограниченной параболой второй степени с осью симметрии, параллельной оси Оу и проходящей через точки кривой, со значениями f(x0), f(x1), f(x2).

 

 

Для каждой пары отрезков построим такую параболу. у

 

 

0 х0 х1 х2 х3 х4 х

 

Уравнения этих парабол имеют вид Ax2 + Bx + C, где коэффициенты А, В, С могут быть легко найдены по трем точкам пересечения параболы с исходной кривой.

(1)

Обозначим .

Если принять х0 = -h, x1 = 0, x2 = h, то (2)

Тогда уравнения значений функции (1) имеют вид:

C учетом этого: .

Отсюда уравнение (2) примет вид:

Тогда

Складывая эти выражения, получаем формулу Симпсона:

Чем больше взять число m, тем более точное значение интеграла будет получено.

Пример. Вычислить приближенное значение определенного интеграла

с помощью формулы Симпсона, разбив отрезок интегрирования на 10 частей.

По формуле Симпсона получим:

m
x -2 -1
f(x) 2.828 3.873 4.123 4.899 6.557 8.944 11.87 15.23 18.94 22.97

 

Точное значение этого интеграла – 91.173.

Как видно, даже при сравнительно большом шаге разбиения точность полученного результата вполне удовлетворительная.

Для сравнения применим к этой же задаче формулу трапеций.

Формула трапеций дала менее точный результат по сравнению с формулой Симпсона.

Для справки: Точное (вернее – более точное) значение этого интеграла: 0,2482725418…

 

 



Дата добавления: 2017-03-12; просмотров: 2150;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.