Законы Менделя и условия их проявления


 

Гибридизация — это скрещивание особей, отличающихся по генотипу. Скрещивание, при котором у родительских особей учитывается одна пара альтернативных признаков, называет­ся моногибридным, две пары признаков — дигибридным, более чем две пары — полигибридным.

Скрещивание животных и растений (гибридизация) про­водится человеком с незапамятных времен, однако устано­вить закономерности передачи наследственных признаков не удавалось. Гибридологический метод Г. Менделя, с помощью которого были выявлены эти закономерности, имеет следую­щие особенности:

▪ подбор пар для скрещивания ("чистые линии");

▪ анализ наследования отдельных альтернативных (взаи­моисключающих) признаков в ряду поколений;

▪ точный количественный учет потомков с различной ком­бинацией признаков (использование математических мето­дов).

Первый закон Менделя — закон единообразия гибридов перво­го поколения. Г. Мендель скрещивал чистые линии растений гороха с желтыми и зелеными семенами (альтернативные признаки). Чистые линии — это организмы, не дающие рас­щепления при скрещивании с такими же по генотипу, т. е, они являются гомозиготными по данному признаку:

При анализе результатов скрещивания оказалось, что все потомки (гибриды) в первом поколении одинаковы по фено­типу (все растения имели горошины желтого цвета) и по гено­типу (гетерозиготы). Первый закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, на­блюдается единообразие гибридов первого поколения как по фе­нотипу, так и по генотипу.

Второй закон Менделя — закон расщепления. При скрещива­нии гибридов первого поколения, т. е. гетерозиготных осо­бей, получается следующий результат:

 

Особи, содержащие доминантный ген А, имеют желтую окраску семян, а содержащие оба рецессивных гена — зеле­ную. Следовательно, соотношение особей по фенотипу (окрас­ке семян) — 3:1 (3 части с доминантным признаком и 1 часть — с рецессивным), по генотипу: 1 часть особей — желтые гомо­зиготы (АА), 2 части — желтые гетерозиготы (Аа) и 1 часть — зеленые гомозиготы (аа). Второй закон Менделя формулиру­ется следующим образом: при скрещивании гибридов первого поколения (гетерозиготных организмов), анализируемых по од­ной паре альтернативных признаков, наблюдается расщепление в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

При экспериментальной и селекционной работе довольно часто возникает необходимость выяснить генотип особи с доми­нантным признаком. Для этого проводят анализирующее скрещи­вание: исследуемую особь скрещивают с рецессивной гомозиго­той. Если она была гомозиготной, то гибриды первого поколения будут единообразны — все потомки будут иметь доминантный

Закономерности наследования 79

признак. Если особь была гетерозиготна, то в результате скрещи­вания происходит расщепление признаков у потомков в соотно­шении 1:1:

 

 

Иногда (обычно при получении чистых линий) применя­ют возвратное скрещивание — скрещивание потомков с одним из родителей. В некоторых случаях (при изучении сцепления генов) проводят реципрокное скрещивание — скрещивание двух родительских особей (например, AaBb и aabb), при котором сначала гетерозиготной является материнская особь, а рецессивной — отцовская, а затем — наоборот (скрещивания Р: АаВb х aabb и Р: aabb х АаВb).

Изучив наследование одной пары аллелей, Мендель решил проследить наследование двух признаков одновременно. С этой целью он использовал гомозиготные растения гороха, отличающиеся по двум парам альтернативных признаков: се­мена желтые гладкие и зеленые морщинистые. В результате такого скрещивания в первом поколении он получил расте­ния с желтыми гладкими семенами. Этот результат показал, что закон единообразия гибридов первого поколения прояв­ляется не только при моногибридном, но и при полигибрид­ном скрещивании, если родительские формы гомозиготны:

 

Затем Мендель скрестил гибриды первого поколения меж­ду собой - P(F1): AaBb x AaBb.

Для анализа результатов полигибридного скрещивания обычно используют решетку Пеннета, в которой по горизон­тали записывают женские гаметы, а по вертикали — мужские:

В результате свободного комбинирования гамет в зиготах получаются разные сочетания генов. Легко подсчитать, что по фенотипу потомство делится на 4 группы: 9 частей растений с горошинами желтыми гладкими (А-Б-), 3 части - с желтыми морщинистыми (A-bb), 3 части — с зелеными гладкими (aaB-) и 1 часть — с зелеными морщинистыми (aabb), т. е. происхо­дит расщепление в соотношении 9:3:3:1, или (3+1)2. Отсюда можно сделать вывод, что при скрещивании гетерозиготных особей, анализируемых по нескольким парам альтернативных признаков, в потомстве наблюдается расщепление по фено­типу в соотношении (3+1)n, где n — число анализируемых признаков.

Результаты скрещивания удобно записывать с помощью фенотипического радикала — краткой записи генотипа, сде­ланной на основе фенотипа. Например, запись А-В- означает, что если в генотипе есть хотя бы один доминантный ген из па­ры аллельных, то независимо от второго гена в фенотипе про­явится доминантный признак.

Если проанализировать расщепление по каждой из пар признаков (желтый и зеленый цвет, гладкая и морщинистая поверхность), то получится 12 особей с желтыми (гладкими) и 4 особи с зелеными (морщинистыми) семенами. Их соотно­шение равно 12:4, или 3:1. Следовательно, при дигибридном скрещивании каждая пара признаков в потомстве дает рас­щепление независимо от другой пары. Это является результа­том случайного комбинирования генов (и соответствующих им признаков), что приводит к новым сочетаниям признаков, которых не было у родительских форм. В нашем примере, ис­ходные формы гороха имели желтые гладкие и зеленые морщинистые семена, а во втором поколении получены растения не только с сочетанием родительских признаков, но и с новы­ми сочетаниями — желтыми морщинистыми и зелеными глад­кими семенами. Отсюда следует

Третий закон Менделя — закон независимого комбинирования признаков. При скрещивании гомозиготных организмов, анали­зируемых по двум (или более) парам альтернативных признаков, во втором поколении наблюдается независимое комбинирование генов разных аллельных пар и соответствующих им признаков.

Анализируя результаты расщепления признаков во втором поколении (появление рецессивных гомозигот), Мендель пришел к выводу, что в гетерозиготном состоянии наследст­венные факторы не смешиваются и не изменяют друг друга. В дальнейшем это представление получило цитологическое обоснование (расхождение гомологичных хромосом при мейозе) и было названо гипотезой "чистоты гамет" (У. Бэтсон, 1902). Ее можно свести к следующим двум основным положениям:

▪ у гибридного организма гены не гибридизируются (не смешиваются), а находятся в чистом аллельном состоянии;

▪ из аллельной пары в гамету попадает только один ген вследствие расхождения гомологичных хромосом и хроматид при мейозе.

Законы Менделя носят статистический характер (выполняются на большом количестве особей) и являются универсальными, т.е. они присущи всем живым орга­низмам. Для проявления законов Менделя необходимо со­блюдение следующих условий:

▪ гены разных аллельных пар должны находиться в разных парах гомологичных хромосом;

▪ между генами не должно быть сцепления и взаимодейст­вия, кроме полного доминирования;

▪ должна быть равная вероятность образования гамет и зи­гот разного типа, а также равная вероятность выживания ор­ганизмов с различными генотипами (не должно быть леталь­ных генов).

В основе независимого наследования генов разных аллель­ных пар лежит генный уровень организации наследственного материала, заключающийся в том, что гены относительно не­зависимы друг от друга.

Отклонения от ожидаемого расщепления по законам Мен­деля вызывают летальные гены. Например, при скре­щивании гетерозиготных каракульских овец расщепление в F) составляет 2:1 (вместо ожидаемого 3:1). Ягнята, гомозигот­ные по доминантной аллели серой окраски (W), нежизнеспособны и погибают из-за недоразвития рубца желудка:

 

 

Аналогичным образом у человека наследуются брахидактилия и серповидно-клеточная анемия. Ген брахидактилии (ко­роткие толстые пальцы) — доминантный. У гетерозигот на­блюдается брахидактилия, а гомозиготы по этому гену поги­бают на ранних стадиях эмбриогенеза. У человека имеется ген нормального гемоглобина (НbA) и ген серповидно-клеточной анемии (НbS). Гетерозиготы по этим генам жизнеспособны, а гомозиготы по HbS погибают в раннем детском возрасте (ге­моглобин S не способен связывать и переносить кислород).

Затруднения в интерпретации результатов скрещивания (отклонения от законов Менделя) может вызвать и явление плейотропии, когда один ген отвечает за проявление не­скольких признаков. Так, у гомозиготных серых каракульских овец ген W детерминирует не только серую окраску шерсти, но и недоразвитие пищеварительной системы. Примерами плейотропного действия гена у человека являются синдромы Марфана и "голубых склер". При синдроме Марфана один ген вызывает развитие "паучьих пальцев", подвывих хрусталика, деформацию грудной клетки, аневризму аорты, высокий свод стопы. При синдроме "голубых склер" у человека наблюдают­ся голубая окраска склер, ломкость костей и пороки развития сердца.

При плейотропии, вероятно, наблюдается недостаточ­ность ферментов, активных в нескольких типах тканей или в одной, но широко распространенной. В основе синдрома Марфана, по-видимому, лежит один и тот же дефект развития соединительной ткани.

 

 



Дата добавления: 2016-11-26; просмотров: 12241;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.011 сек.