Информационный эффект
Информационный эффект обуславливается неполнотой геологической информации, доступной во время оценки. Мы имеем только оценки значений блоков вместо истинных значений. Чтобы наглядно представить себе это, мы нарисуем диаграмму рассеивания истинных значений (ось Y) против оценок (ось X) для различных методов оценивания. В идеале оценочные значения должны быть эквивалентны настоящим, поэтому точки должны лежать на линии, проходящей через центр координат под углом 45 градусов. К сожалению, это не так. Они образуют облако точек, которое может быть представлено эллипсом.
Рис. 1.5. Диаграмма разброса истинных значений относительно оценочных. Облако точек ограничено эллипсом. Блоки с оцененным значением больше 300 намечены для добычи, в то время как могут быть добыты только блоки с действительным содержанием больше 300.
Когда блоки выбираются для добычи, то все блоки, оцениваемые значения которых выше борта, считаются рудосодержащеми. Это показано графически с помощью вертикальной линии с координатой X=300. Блоки правее этой линии выбраны для добычи. В действительности же мы хотим добыть блоки, истинные значения содержания которых больше 300. Горизонтальная линия с координатой Y=300 показывает это. Блоки выше этой линии должны быть добыты. Эти 2 линии делят всю область на четыре зоны:
1. Истинные значения > 300; значение оценки > 300. Эти блоки правильно оценены, как рудосодержащие. Они соответствуют правой верхней части диаграммы.
2. Настоящее значение < 300; значение оценки < 300. Эти блоки пустой породы корректно оценены как пустая порода. Они лежат в левой нижней части диаграммы.
3. Настоящее значение > 300; значение оценки < 300. Эти истинные рудосодержащие блоки были ошибочно отнесены к пустой породе; эта ошибка оценивания может иметь важное значение для рудника. Эти блоки лежат в левой верхней части диаграммы.
4. Настоящее значение < 300; значение оценки > 300. Эти блоки пустой породы были отнесены к рудосодержащим. Этот второй тип ошибки оценки не отменяет предшествующую ошибку и может иметь негативные экономические последствия для рудника. Такие блоки расположены в правой нижней части диаграммы.
Вернемся к примеру, Рис. 1.6. показывает диаграмму рассеяния, соответствующую полигональному методу оценки и кригингу. Для кригинга наклон кривой регрессии стремится к 1.0 (т.е. - 45 градусов), тогда как он становится меньше 1.0 для полигонального метода. Теперь посмотрим на “форму” двух облаков. Кригинг дает более “тонкое” облако. Читатель может увидеть неверную интерпретацию блоков для каждого метода оценки (см. блоки в левой верхней и правой нижней четвертях). Сравнение подтверждает, что кригинг работает лучше. В Главе 8 мы покажем, что при выборе метода оценки учитывают наклон линии регрессии истинных и оцененных значений.
a)
b)
Рис 1.6. Диаграмма рассеяния истинных значений в сравнении с оценками; (a) для полигональной оценки и (b) для кригинга. В идеале, точки должны лежать на диагонали (настоящие значения = значениям оценки)
Эффект основания
Геостатистический термин “основания” относится к размерам и объему пробы или блока. В данном случае пробы имеют основание 1 на 1 м, тогда как блоки: 2 на 2 м. В общем случае, основание проб меньше, чем блоков. Истинные значения шестнадцати блоков 2 на 2 м и 64-х блоков (проб) 1 на 1 м показаны на Рис. 1.4. и 1.7. Хотя средние значения для обеих вариантов практически одинаковы, дисперсия проб (блоков - 1 на 1 м) больше, чем дисперсия блоков.
Рис 1.7. Истинные значения 64-х блоков (проб) размерами 1 на 1 м
Распределения блоков показывают, что меньшие по размерам блоки более рассеяны, чем большие. При бортовом содержании 300, больше руды будет добыто для блоков с размером 1м на 1м, чем для блоков - 2м на 2м. Так как полигональный метод приравнивает содержания в пробах (т.е. малое основание) к содержаниям в блоках, то гистограмма блоков заменяется гистограммой проб, хотя они довольно разные. Это подтверждает, что хорошая оценка должна принимать во внимание разницу между основаниями проб и блоков при оценивании. Этот эффект называется эффектом основания.
Итак мы увидели, что эффект основания и эффект информации могут являться двумя важными причинами для неверного предсказания запасов. Теперь мы знаем некоторые свойства, которыми должна обладать хорошая оценка. Мы можем увидеть, что способ, которым мы объединяем данные в окрестности оцениваемого блока, очень важен.
Первая часть данного курса будет посвящена вариограммам; это статистический инструмент для оценивания функции зависимости содержания в близко расположенных пробах от расстояния между этими пробами. Во второй части книги вариограммы будут использоваться для вычисления весов, которые будут использованы при оценивании блоков в процессе кригинга.
Дата добавления: 2019-05-21; просмотров: 727;