Эмбриональный период развития карпа
Карп откладывает икру на растительность в стоячей или слабопроточной воде при температуре обычно 17 °С и выше. Его развитие в раннем периоде онтогенеза проходит в этих условиях и приспособлено к ним. Икра обычно желтого цвета, но встречаются икринки с зеленоватым оттенком, бесцветные и др. Средний диаметр икры 1,5-1,8 мм с небольшим перивителлиновым пространством (относительные размеры 1,25-1,4 мм), она полиплазматическая. По количеству цитоплазмы занимает одно из первых мест среди икры рыб семейства карповых. Диаметр желточного мешка в среднем 1,2 мм. Оболочка икры клейкая. Продолжительность развития икры карпа до вылупления эмбрионов зависит, прежде всего, от температурных условий. Однако для развития икры и вылупления необходимо, как установлено, определенное количество тепла. Для карпа этот показатель составляет 60- 80 градусо-ч.
Продолжительность развития икры рыб находится в зависимости от температуры воды. Продолжительность эмбрионального развития икры карпа в зависимости от температуры приведена в таблице 1 (по данным Ф. М. Суховерхова и А. П. Сиверцева).
Таблица 1 - Продолжительность эмбрионального развития икры карпа в зависимости от температуры воды
Температура воды, °С | Продолжительность инкубации, сут |
2,5 -3 | |
3,5 -4,0 | |
4,5 -5,0 | |
7,0 -7,5 | |
Ниже 16 | более 8 |
Эмбриональный период развития карпа состоит из семи этапов (по Лужину, 1976).
На первом этапе происходит оплодотворение, образование зиготы и образование перивителлинового пространства и бластодиска (рис. 27 а, б).
У неоплодотворенной икринки (рис. 27, а) оболочка плотно прилегает к желтку. Через несколько минут после оплодотворения в икре, находящейся в воде, происходят изменения, связанные с проникновением воды в икринку. Это приводит к отслоению оболочки от желтка, образованию перивителлинового пространства. Процесс набухания икры при температуре 19 °С длится примерно один час. Диаметр икры увеличивается в среднем на одну треть. Одновременно в период набухания образуется зародышевый диск, или бластодиск (рис. 27, б).
Активация икринок, вызванная оплодотворением, приводит к глубоким изменениям обмена веществ. В течение первого часа после оплодотворения, когда наступает резкое оводнение икринок, относительное содержание сухих веществ снижается с 30-32 до 10-12 % и примерно в таком количестве остается до вылупления эмбриона. Содержание гликогена - основного источника энергии в период образования бластодиска - уменьшается в 2 раза, а величина аденозинтрифосфорной кислоты (АТФ), занимающей центральное место в энергетическом обмене, снижается почти в 3 раза.
На втором этапе происходит дробление бластодиска от двух бластомеров до бластулы. В возрасте трех часов наступает первая стадия этапа дробления - появляется первая борозда, делящая бластодиск на два бластомера (рис. 27, в), а затем наступают стадии четырех (рис. 27, г), восьми (рис. 27, д) бластомеров и т.д.
Через 6 ч от момента оплодотворения наступает стадия морулы крупных клеток (рис. 27, е). Далее клетки бластодиска все больше дробятся. Наступает стадия морулы мелких клеток. Между бластодиском и желтком возникает небольшая полость или бластоцель и образуется стадия бластулы (рис. 27, ж). Бластула - это своеобразное многоклеточное образование – бластодерма, расположенная на анимальном полюсе.
В целом процесс дробления сопровождается значительными внутренними энергетическими затратами. За этот период показатель АТФ снижается почти в два раза.
Обозначения по тексту
Рисунок 27 - Эмбриональный период развития карпа
В рыбоводной практике на стадиях 4-8 бластомеров второго этапа развития дают оценку качества икры по нормальному дроблению. Образование разноразмерных, асимметрично расположенных бластомеров свидетельствует об аномальном развитии икры. Именно на стадиях дробления от 4- 8 бластомеров до ранней морулы определяют и процент оплодотворения икры.
На третьем этапе происходит обрастание желтка бластодермой - гаструляция и формирование эмбриона. Гаструляция начинается с обрастания желтка многослойной бластодермой. Через 8-9 ч половина желтка оказывается схваченной бластодермой (рис. 27, з). Появляется зародышевый валик, который на стадии замыкания желточной пробки (рис. 27, и) виден весьма отчетливо. У тела эмбриона заметен расширенный головной отдел. Желточная пробка замыкается. Гаструляция завершается полным обрастанием бластодермой всего желтка.
Во время гаструляции происходит существенная структурная перестройка, в результате которой образуются три зародышевых листка: эктодерма, мезодерма и энтодерма. Обмен веществ во время гаструляции имеет свои особенности. После гаструляции количество фосфора АТФ и небелкового азота снижается, а количество общего белка увеличивается. Процесс гаструляции является наиболее уязвимым к воздействию факторов внешней среды. Гаструляция всегда сопровождается повышенной гибелью икры. Поэтому учет отхода целесообразно проводить после прохождения этого этапа развития, а не раньше.
На четвертом этапе происходит дифференциация головного и туловищного отделов эмбриона. Наблюдается утолщение головной и хвостовой частей эмбриона. Через 17-20 ч от оплодотворения икры тело эмбриона охватывает около 3/5 окружности желтка. Начинается сегментация тела. В туловище образуются первые два-три сомита (рис. 27, к). В возрасте 22-24 ч формируются глазные пузырьки при продолжающейся сегментации тела (рис. 27, л). Через 24-28 ч за глазными пузырями в области продолговатого мозга появляются слуховые плакоды (рис. 27, м). Количество сомитов достигает 9-11. Глазные бокалы (зачатки глаз) приобретают щелевидные углубления.
На пятом этапе обособляется хвостовой отдел и эмбрион начинает двигаться. В результате обособления хвостового отдела и роста в длину зачатка кишечной трубки желток приобретает грушевидную форму. Через 35-45 ч в глазах отчетливо виден хрусталик (рис. 27, н). Количество сомитов продолжает увеличиваться (более 20). Тело эмбриона совершает слабые движения. В возрасте немногим более двух суток наблюдается сегментация хвостового отдела. К этому времени сегментация тела почти заканчивается. В глазах появляется черный пигмент. Различаются отделы головного мозга. В слуховых капсулах образовываются отолиты (рис. 27, о). При обособлении хвостового отдела и пигментации глаз наступают определенные изменения в обмене веществ: показатель АТФ вновь возрастает до исходной величины, однако содержание белка и небелкового азота остается прежним, как при гаструляции.
На шестом этапе в возрасте 2,5 сут у эмбриона появляются форменные элементы крови. Число сомитов в туловище 24, в хвостовом отделе - 16. Глаза пигментированы (рис. 27, п). Сформировалась кожная жаберная крышка. Голова пригнута к желтку. На рыле, перед глазами появились обонятельные ямки. Снизу образовалась ротовая воронка. Позади глаз появились четыре жаберные плакоды. На уровне первого миотома располагается грудной плавничок. Эмбрион активно вращается в оболочке – стадия вращающегося эмбриона.
Эта стадия эмбрионального развития карпа, как и других рыб, наиболее подходит для перевозки икры в условиях изотермических ящиков, где возможно некоторое охлаждение, способствующее замедлению развития.
На седьмом этапе происходит вылупление из оболочки. Это последний этап эмбрионального периода развития. Через трое суток инкубации икры при температуре 19-22 °С начинается вылупление эмбрионов (рис. 27, р).
Эмбрионы рыб в процессе эмбрионального развития проходят ряд критических этапов и стадий, когда наблюдается повышенная чувствительность эмбрионов к различным абиотическим факторам среды (температуре, газовому составу воды, солености, механическому воздействию и др.). Это связано с тем, что в критические этапы и стадии развития происходят значительные изменения в перестройке обмена веществ развивающегося эмбриона.
Критическими в развитии эмбриона карпа, как у большинства нерестящихся весной рыб, являются следующие этапы и стадии:
- от начала дробления до морулы мелких клеток;
- гаструляция;
- перед вылуплением и вылупление.
Именно на этих стадиях эмбриогенеза, наблюдается повышенная гибель эмбрионов. В эти моменты необходимо особенно стремиться к созданию оптимальных условий для развития икры: поддерживать в инкубационных аппаратах постоянный и повышенный расход воды, не допускать резких (более 2 °С) температурных перепадов, оберегать икру от различных механических воздействий и т. д.
Дата добавления: 2016-08-06; просмотров: 8110;