Примеры равновесия плазмы в магнитном поле. Токамак
Простейшим конкретным примером применения основных уравнений магнитогидродинамики может служить изолированный плазменный столб цилиндрической формы, удерживаемый магнитным полем протекающего в плазме продольного тока (рис. 2.26). При равновесии радиальный градиент давления в плазменном столбе должен быть равен электродинамической силе (l/c)jzHφ, где jz — плотность продольного тока, а Hφ—напряженность магнитного поля тока. Силовые линии этого поля имеют кольцевую форму. Величины jzи Hφв случае цилиндрической симметрии связаны соотношением
следовательно,
(15.16)
Отсюда
(15.17)
Здесь верхний предел интегрирования по r принят равным радиусу сечения плазменного цилиндра а. На границе плазмы p=0. Поэтому
(15.17a)
где — среднее значение давления плазмы в столбе. Из (15.17) и (15.17а) следует, что пропорционально квадрату напряженности магнитного поля на границе плазмы:
Образование плазменного столба, удерживаемого давлением магнитного поля протекающего по нему тока, носит название линейного пинч-эффекта. При пропускании тока через прямую разрядную трубку, заполненную газом, сначала должна возникнуть плазма (в результате ионизации газа), затем под действием электродинамических сил она начинает сжиматься и в результате может образоваться стянутый к оси плазменный столб. Ток в этом случае выполняет сразу три функции: он создает плазму, нагревает ее за счет джоулева тепла и уравновешивает давление плазмы в сжатом плазменном столбе с помощью давления собственного магнитного поля. В начальный период исследований по физике высокотемпературной плазмы этот метод достижения высоких температур благодаря своей кажущейся простоте представлялся очень перспективным. Казалось, что если пропустить через газ при низком давлении импульсный ток достаточно большой силы, то за ничтожный промежуток времени в разрядной трубке возникнет раскаленный плазменный шнур с огромной температурой.
Однако практически в экспериментах с такой геометрией не удалось поднять температуру плазмы выше ~1*106 К, и то всего лишь на несколько микросекунд. Как показали эксперименты, развитие кратковременного импульсного разряда с большой силой тока не приводит к образованию квазистационарного состояния, описываемого условием равновесия (15.16). Постфактум сейчас можно сказать, что при некоторой проницательности это можно было бы предвидеть заранее. Не учтенным оказался важнейший физический фактор — неустойчивость «гибкого» проводника, каковым является плазменный столб с током. За очень короткий промежуток времени (в обычных условиях эксперимента — за несколько микросекунд) в плазменном шнуре развиваются деформации, напоминающие «перетяжки» и «изгибы» (рис. 2.27). Они разрушают пра- правильную геометрическую структуру плазменного образования, в результате чего плазма начинает сильно взаимодействовать со стенками и быстро охлаждается.
На этом конкретном примере мы впервые встретились с одной из центральных проблем физики плазмы — проблемой устойчивости плазменных конфигураций. Общий анализ относящегося сюда широкого комплекса явлений составит содержание ряда следующих параграфов.
Хотя первая попытка получить высокотемпературную плазму в равновесном состоянии путем использования линейного пинч-эффекта оказалась неудачной, однако дальнейшее развитие этой основной идеи, в конце концов, увенчалось успехом. Два основных элемента, добавленных в процессе развития к первоначальной идее, состояли: 1) в стабилизации неустойчивости «мягкого» плазменного проводника с током при помощи сильного продольного поля внешнего происхождения. Силовые линии продольного поля образуют как бы жесткий каркас, препятствующий нарастанию любых макроскопических деформаций в плазменном шнуре, и 2) в замыкании плазменного цилиндра в кольцо для устранения потерь энергии на концах (при наличии концов, опирающихся на электроды, невозможно получить плазму в квазистационарном состоянии с достаточно высокой температурой).
Итак, мы пришли к системе, получившей название «токамак». Она изображена на рис. 2.28.
Кольцевой плазменный виток удерживается в равновесии магнитным полем тока Нφи стабилизируется продольным полем Hθ. Ток в плазме можно создать индукционным путем (например, надев камеру, в которой должен образоваться плазменный виток, на сердечник трансформатора). Однако, как нетрудно видеть, для того чтобы добиться равновесия плазмы, кроме полей Нφи Hθнужно ввести также поле Н⊥, направленное вдоль главной оси тороидальной системы (перпендикулярно к плазменному кольцу). Это поле необходимо для того, чтобы скомпенсировать электродинамическую силу радиального расталкивания кольцевого плазменного тока. При взаимодействии поля Н⊥с током I возникает сила (на единицу плазменного кольца). При указанном на рис. 2.28 направлении Н⊥ эта сила в каждом элементе кольца направлена по радиусу к оси тороидальной системы.
В обычных условиях | Н⊥ | < | Нφ (а)|, поэтому присутствие Н⊥ не нарушает общей картины поля. Линии результирующего магнитного поля имеют винтовую структуру. Они навиваются вокруг кольцевой осевой линии плазменного витка. В таком поле траектории заряженных частиц принадлежат к двум различным классам: существуют «пролетные» и «запертые» частицы. Рассматриваемая как единое целое, плазма свободно растекается вдоль винтовых силовых линий. Прежде чем заниматься анализом условий равновесия в такой тороидальной системе, следует обратить внимание на одну характерную для нее черту топологии магнитного поля. Пусть плоскость S представляет собой поперечное сечение системы. Силовая линия, проходящая через точку М1 на этой плоскости, обходя один раз вокруг тороида, пересечет плоскость S в точке М2, в следующий раз — в точке M3 и т. д.(рис. 2.29). Множество точек М1,M2, М3, ... в общем случае будет бесконечным. Однако для некоторых линий поля оно может быть конечным, и это означает, что такая линия поля замыкается сама на себя. Это так называемые вырожденные линии. К их числу, в частности, принадлежит осевая линия витка, на которой поле тока обращается в нуль. Ее след (см. рис. 2.28) обозначен буквой О.
Поведение силовой линии, многократно обходящей вдоль торо-тороида, определяется положением изображающих точек М1,M2,... Пусть после нескольких обходов точка М приблизилась к начальной точке М1. При следующем обходе угол поворота вокруг Обудет уже больше 2π. Где в таком случае расположится следующая точка? Естественно предположить, что Мn+1 лежит между М1 и М2, следующая Мn+2 — между М2 и М3 и т. д., и после многих обходов изображающие точки образуют гладкую замкнутую кривую. В таком случае можно говорить о существовании семейства магнитных поверхностей. Каждая из них, образно выражаясь, изготовлена из одной бесконечной силовой линии. Линия поля, порождающая магнитную поверхность, плотно устилает ее.
Магнитные поверхности в токамаке образуют множество вложенных друг вдруга тороидов. В континууме этих тороидов каждый, взятый наудачу, образуется одной силовой линией. Однако среди магнитных поверхностей есть счетное множество «вырожденных», которые создаютсязамкнутыми силовыми линиями. В этом случае на поверхности укладывается непрерывное множество линий поля, смещенных друг относительно друга. Л. Спитцер высказал гипотезу о том, что магнитные поверхности существуют также и для таких тороидальных полей, в которых винтовые силовые линии, поворачивающиеся вокруг кольцевой оси, создаются только с помощью внешних источников специальных винтовых обмоток или же деформацией всей магнитной системы — например, превращением кольцевого соленоида в восьмерку (рис. 2.30).
Однако теоретический анализ показывает, что в случае таких несимметричных полей можно говорить о системе вложенных друг в друга магнитных поверхностей лишь в некотором приближении. В общем случае структура магнитного поля является довольно сложной. Отдельные магнитные поверхности оказываются разделенными системой тороидальных трубок («волокон»), между которыми силовые линии ведут себя совершенно хаотически. Очевидно, что вопрос о существовании магнитных поверхностей имеет большое значение для перспективы использования различных магнитных систем для удержания горячей плазмы. Поскольку плазма свободно растекается вдоль силовых линий, ее давление р в условиях равновесия должно быть одинаковым в разных точках одной и той же магнитной поверхности.
Таким образом, магнитные поверхности представляют собой семейство плазменных изобар. Если (вместо того чтобы обрисовывать плавную кривую) «изображающие» точки М1, М2... заполнят некоторую широкую зону в поперечном сечении плазменного витка, то в пределах этой зоны плазма может находиться в равновесии только при условии gradp=0. Очевидно, что обращение в нуль градиента давления в сечении плазменного витка равносильно появлению аномально большой утечки плазмы в направлении, перпендикулярном к Н.
Представляет немалый интерес хотя бы вкратце разобрать вопрос о топологии магнитных поверхностей. Если заданы источники магнитного поля, т. е. система электрических токов, то вектор магнитного поля Н(r) можно в принципе считать заданным (вычисленным по формуле Био—Савара). Это позволяет написать систему уравнений для силовых линий магнитного поля, используя их определение как линий, касательная к которым параллельна Н в каждой точке. Оказывается, что найти решение этой, казалось бы, простой системы уравнений в общем случае не так-то просто.
Основная идея подхода к этой проблеме заключается в использовании, на первый взгляд, неожиданной аналогии с гамильтоновыми уравнениями динамики материальной точки. В данном случае это означает, что координата вдоль силовой линии играет роль времени, а некий «гамильтониан», описывающий силовые поля, в которых «движется» рассматриваемая материальная точка, тогда должен быть периодической функцией времени. Теперь становится понятной сложность задачи. Ведь в классической механике вопрос об устойчивости движения с такими гамильтонианами сводится к знаменитой проблеме о так называемых малых резонансных знаменателях. Формально разложение в ряд Фурье нелинейной периодической функции содержит бесконечное число членов с потенциальной возможностью соответственно бесконечного числа резонансов.
Весьма сходная проблема небесной механики — о движении планет при учете возмущающего резонансного влияния друг на друга — как известно, приводит к неустойчивости множества возможных орбит и выделению некоторых устойчивых состояний.
«Резонансные» возмущения, нарушающие тороидальную симметрию магнитного поля в токамаке, могут создаваться не только из-за неидеальной геометрии наружных проводников с током, но и в результате внутренних неоднородностей собственного тока, текущего по плазме. Такие неоднородности могут быть и следствием мелкомасштабных неустойчивостей плазмы. В предельном случае достаточно сильных микронеоднородностей поведение силовых линий магнитного поля может напоминать стохастическое движение броуновской частицы. Такое стохастическое разрушение структуры магнитных поверхностей может стать препятствием для длительного удержания плазмы в термоядерных ловушках.
Эти качественные рассуждения можно проиллюстрировать на примере разрушения плоских магнитных поверхностей при наложении мелкомасштабного возмущающего поля. Пусть магнитные силовые линии являются прямыми, лежащими в плоскостях yz. Напряженность этого поля примем постоянной и равной H0. Примем угол между Н0 и осью z зависящим от координаты х. Если при х=0 H0║0z, тo вблизи х=0 простейшей формой такой зависимости может служить . Физически для реализации описываемого поворота силовых линий нужно иметь электрический ток, текущий вдоль силовых линий по плазме.
Наложим возмущающее магнитное поле. Тогда «уравнения движения» для силовых линий с учетом возмущений можно записать в виде, гдеl— координата вдоль силовой линииНо. Интегрируя второе из этих уравнений, получаем .
Выберем хо, удовлетворяющее условию . Оно означает, что возмущение находится «в резонансе» с невозмущенной силовой линией в плоскости х=х0, иначе говоря, фаза возмущения постоянная вдоль l. При этом условии
(15.18)
Теперь немедленно воспользуемся аналогией с уравнением движения электрона в поле монохроматической электростатической волны при условии резонанса (vo— невозмущенная скорость) :
Правила соответствия очевидны:
Тогда ширина зоны захвата электрона полем волны соответствует ширине зоны резонансного возмущения магнитного поля. Картина возникающего расщепления магнитных поверхностей на плоскости ху в точности совпадает с картиной поведения фазовых траекторий частицы на плоскости vx (рис. 2.31,а). Аналогом осцилляции захваченных; электронов на этом рисунке являются так называемые магнитные островки.
Для возмущения, представляющего собой суперпозицию отдельных гармоник нетрудно провести рассуждения, приводящие к установлению аналога квазилинейного приближения для электронов. Условием применимости такого приближения должно являться перекрытие зон резонансов соседних гармоник возмущения. Это квазилинейное уравнение, которое описывает стохастическое поведение силовых линий магнитного поля (см. рис. 2.31,б), легко написать, пользуясь введенными выше правилами соответствия:
В рассматриваемом приближении «диффузия» силовых линий описывается с помощью соответствующей плотности вероятности fH(l,r).
После этого небольшого отступления проанализируем равновесие кольцевого плазменного витка, используя уравнения магнитной гидродинамики. В первом приближении можно считать, что плазменный виток имеет в поперечном сечении форму окружности радиуса а. Вне этого круга р и j обращаются в нуль. Тороидальнаяповерхность радиуса а представляет собой граничную поверхность плазменного витка, «оторванного» от стенок вакуумной камеры, внутри которой этот виток находится. Вместе с тем это одна измагнитных поверхностей тороидального поля. Другим независимым параметром, определяющим геометрию системы, является большой радиус плазменного витка R. В дальнейшем будем предполагать, что a<<R (это практически всегда выполняется в эксперименте). Заметим, что при малом отношении a/R плазменный виток по свойствам должен приближаться к прямому цилиндру.
Поскольку в задачу входят два главных параметра а и R, отвечающих двум степеням свободы, то нужно найти два условия равновесия витка — по малому и большому радиусам. Для первого можно пренебречь влиянием тороидальности и использовать уравнение равновесия, справедливое для прямого плазменного цилиндра. При этом плазма находится под действием полей Hφ и Hθ, (в первом приближении поле R роли не играет), и поэтому уравнение равновесия должно представлять собой обобщение соотношений (15.16) и (15.17). Такое обобщение можно получить, считая, что напряженность обоих полей и давление плазмы зависят только от r (т. е. от расстояния между данной точкой и точкой О в поперечном сечении). Простые вычисления показывают, что для равновесия необходимо, чтобы соблюдалось следующее равенство:
(15.19)
где — усредненное значение r w:top="1134" w:right="850" w:bottom="1134" w:left="1701" w:header="720" w:footer="720" w:gutter="0"/><w:cols w:space="720"/></w:sectPr></w:body></w:wordDocument>"> в плазме. Это равенство можно записать также в следующем виде:
(15.20)
Более детальный анализ приводит к выводу, что соотношение (15.20) справедливо также и для тороидальной системы после внесения небольшого уточнения, которое относится к величине Hθ (а). При строгом расчете Hθ (a) в (15.20) должно соответствовать Hθ на поверхности плазмы при φ=π/2 (рис. 2.32).
Выясним теперь происхождение и величину сил, которые могут вызвать изменение R. Существуют следующие причины их появления:
1. Согласно законам электродинамики в кольцевом проводнике с током должна возникать радиальная сила растяжения, пропорциональная I2. При а/R<<1 она равна , где L — коэффициент самоиндукции проводника.
2. Плазменный виток должен растягиваться также под действием внутреннего давления. Растягивающее усилие можно определить, вычислив работу, совершаемую давлением плазмы при бесконечно малом изменении R, и разделив эту работу на δR. Таким путем нетрудно найти, что полное растягивающее усилие равно .
3. Существует также радиальная пондеромоторная сила, обусловленная различием в напряженности продольного магнитного поля вне и внутри плазмы. Механизм возникновения этой силы можно разъяснить, обратившись к рис. 2.32, на котором изображен небольшой отрезок плазменного витка. Кольцевые силовые линии внутри плазмы стремятся сократиться, вследствие чего возникают силы F1 и F2, приложенные к торцам отрезка. Их равнодействующая направлена внутрь. Как нетрудно установить, она равна , где ∆θ — угловая длина отрезка. Если бы напряженность поля внутри и снаружи витка была одинакова, то эта сила должна была бы уравновешиваться боковым давлением силовых линий, поэтому результирующая сил бокового давления должна быть равна . В общем случае при остается разностный эффект. В расчете на всю длину витка он дает силу радиального растяжения, равную
(15.21)
Для равновесия плазменного витка необходимо, чтобы сумма трех радиальных растягивающих усилий компенсировалась силой F⊥ взаимодействия тока I с поперечным полем H⊥. Следовательно, условие равновесия по большому радиусу имеет вид
(15.22)
Если плазменный виток создается внутри тороидальной камеры, изготовленной из материала с высокой электропроводностью, то коэффициент самоиндукции можно принять равным
(15.23)
где b — радиус поперечного сечения камеры; li — внутренняя индуктивность плазмы на единицу длины витка (при равномерномраспределении тока по сечению li≈1/4, а при сильном скин-эффекте li≈0). Используя (15.20) и (15.23), можно исключить из уравнения (15.22) член, содержащий . В результате условие равновесия по R принимает вид
(15.24)
В установках, предназначенных для получения плазменных витков в режимах эксперимента с не очень большой длительностью, компенсация растягивающих усилий может происходить автоматически, так как при радиальном расширении шнура в проводящей оболочке камеры возникают токи Фуко. Они создают поперечную слагающую магнитного поляH⊥, необходимую для компенсации растяжения. Как показывает несложный расчет, составляющая H⊥пропорциональна I и смещению. Итак, равновесие должно устанавливаться при определенном смещении
(15.25)
В экспериментальных установках b<<R, и поэтому равновесие устанавливается при относительно небольших смещениях плазмы относительно центра поперечного сечения камеры.
В режимах с большой длительностью компенсация растяжения с помощью токов Фуко оказывается недостаточной, и приходится создавать дополнительные источники поперечных полей, размещая кольцевые проводники с током вблизи камеры. С помощью такихпроводников можно управлять положением витка в камере, изменяя величину δ.
(источник:Арцимович Л.А., Сагдеев Р.З. Физика плазмы для физиков, гл. 2, §§2.9, 2.10)
Дата добавления: 2021-10-28; просмотров: 416;