Очистка воды от растворенных газов
10.1. Общие положения
Удаление из воды растворенных газов – важная часть комплексного технологического процесса обработки воды, реализуемого на ТЭС и АЭС. Необходимость этого процесса вызвана стремлением уменьшить интенсивность коррозии внутренних поверхностей теплосилового оборудования под действием растворенных в теплоносителе агрессивных газов. Кроме того, наличие в воде растворенной углекислоты отрицательно сказывается на эффективности работы анионитных фильтров, установленных в схеме очистки добавочной воды.
Один из основных потоков, подвергаемых дегазации – питательная вода котлов. Однако растворенные газы удаляют и из потоков, не являющихся непосредственно рабочим телом. Такими потоками являются химически очищенная вода, подпиточная вода тепловых сетей, конденсат пара, возвращаемый в тепловой цикл станции от внешних потребителей, охлаждающая вода конденсаторов турбин.
Кислород О2 и диоксид углерода СО2 присутствуют в воде в результате растворения при контакте воды с атмосферным воздухом. Углекислота появляется в воде также в процессе химического обессоливания после стадии Н-катиониро-вания, а при умягчении воды методами Na- и Н- Na-катионирования вода дополнительно насыщается связанным диоксидом углерода. Азот – инертный газ, его наличие в воде обусловлено контактом воды с атмосферным воздухом, появление водорода Н2 в воде – коррозией внутренних поверхностей теплосилового оборудования. Аммиак NН3 попадает в воду главным образом в результате аминирования питательной воды и, кроме того, присутствует в химически очищенной воде, если в схеме подготовки воды установлены NН4-катионитные фильтры. Такие газы, как сернистый ангидрид SO2 и сероводород H2S, могут присутствовать в теплоносителе при использовании на станции котлов среднего давления и обработке питательной воды сульфитом натрия.
Наиболее эффективный способ удаления растворенных газов из воды – десорбция. Этот способ основан на известных законах Генри–Дальтона, характеризующих зависимость между концентрацией в воде растворенного газа и его парциальным давлением.
Применение этих законов дает возможность определить концентрацию газа при том условии, что в паровом пространстве над водой находится лишь рассматриваемый газ и отсутствуют другие газы. Концентрация растворенного в воде газа выражается уравнением
(10.1) |
где СГ – концентрация растворенного в воде газа; КГ – коэффициент абсорбции газа водой: рОБЩ – общее давление; – парциальное давление водяного пара;
рГ – парциальное давление газа.
|
Рис.10.1. Коэффиценты абсорбции СО2 (1), N2 (2) и О2 (3) водой
Удаление газа из воды существенно зависит от кинетики десорбции, которая может быть выражена уравнением
(10.2) |
где dC/dτ – скорость десорбции; СГ – концентрация удаляемого газа; – равновесная концентрация газа; k – коэффициент пропорциональности; f – удельная поверхность раздела фаз.
Наибольший эффект достигается при , т. е. при парциальном давлении удаляемого газа, близком к нулю. В этом случае уравнение (10.2) преобразуется к виду
. | (10.3) |
При постоянных k и f для данного аппарата концентрация газа в воде зависит от времени дегазации, с увеличением времени дегазации концентрация растворенного газа в воде уменьшается. Полного освобождения воды от растворенного газа в какой-либо реальный отрезок времени достичь невозможно, поэтому время, необходимое для дегазации, находят, задаваясь определенной конечной концентрацией растворенного в воде газа.
Эффект дегазации можно повысить, увеличив удельную поверхность раздела фаз пара и воды. В этом случае при прочих равных условиях увеличивают время контакта воды с паром, не содержащим удаляемого из воды газа. На эффект дегазации существенно влияет повышение температуры воды, это обусловлено тем, что с повышением температуры уменьшается коэффициент абсорбции газа водой. На рис. 10.1 показана зависимость коэффициента абсорбции от температуры для кислорода, углекислоты и азота.
10.2. Удаление свободной углекислоты
Удаление из воды свободной углекислоты методом аэрации широко применяют на ВПУ ТЭС и АЭС. Использование термической деаэрации для удаления углекислоты в этих схемах нежелательно вследствие нагревания воды, которую пришлось бы после этого охлаждать для очистки в последующих ступенях схемы водоподготовки. Сущность метода аэрации заключается в продувании воздуха, свободного от углекислоты, через воду. Таким образом, при использовании данного метода, так же как и при термической деаэрации воды, над поверхностью обрабатываемой воды создается атмосфера, в которой парциальное давление углекислоты ничтожно мало по сравнению с парциальным давлением углекислоты в воде.
Удаление углекислоты производят в аппаратах, называемых декарбонизаторами, а сам процесс носит название декарбонизации. Декарбонизацию проводят в аппаратах как пленочного, так и барботажного типа. Принципиальная схема декарбонизатора пленочного типа представлена на рис. 10.2.
Декарбонизатор представляет собой цилиндрический стальной бак 1, внутри которого располагается насадка 2, состоящая из деревянных досок, уложенных в шахматном порядке с зазором, или из колец Рашига, представляющих собой керамические кольца. Вода подается в декарбонизатор сверху через патрубок 4. Со щита 6 она сливается через распределительные сопла 5 на поверхность насадки. Обрабатываемая вода омывает элементы насадки тонким слоем, а навстречу ей движется воздух, подаваемый в декарбонизатор вентилятором через патрубок 7. Удаляемая из воды углекислота переходит в воздух и вместе с ним выводится из декарбонизатора в атмосферу через патрубок 3. Прошедшая очистку вода стекает в поддон декарбонизатора и через гидравлический затвор по патрубку 8 поступает в бак декарбонизованной воды, который располагается под днищем декарбонизатора.
Рис.10.2. Принципиальная схема декарбонизатора
При правильно выбранной площади поверхности контакта воды с воздухом и достаточном расходе воздуха использование декарбонизатора пленочного типа позволяет снизить концентрацию растворенной углекислоты в декарбонизованной воде до 3 – 7 мг/дм3.
Конструкция барботажного декарбонизатора предусматривает продувку сжатого воздуха снизу через всю площадь сечения бака, в который сверху поступает обрабатываемая вода. Для этих аппаратов требуется более высокое давление воздуха, подаваемого компрессором, чем для декарбонизаторов пленочного типа. Кроме того, необходимо предусматривать очистку воздуха от смазочного масла компрессора.
В практике обработки воды получили широкое применение декар-бонизаторы с насадкой из колец Рашига. Расчет декарбонизатора состоит в определении геометрических размеров необходимой поверхности колец Рaшига и определении напора, создаваемого вентилятором. Площадь поперечного сечения декарбонизатора определяется по плотности орошения насадки, т. е. по расходу воды, приходящемуся на единицу площади поперечного сечения декарбонизатора. Плотность орошения для декарбонизатора с насадкой из колец Рашига принимают равной 60 м3/(м2·ч).
Таким образом, площадь поперечного сечения декарбонизатора, м2:
(10.4) |
где Q – производительность декарбонизатора, м3/ч.
Диаметр декарбонизатора в метрах определяют из уравнения:
. | (10.5) |
Размер колец Рашига независимо от производительности декарбонизатора cocтавляет 25´25´3 мм. Поверхность единицы объема колец Рашига равна 204 м2/м3, а масса 532 кг/м3. Количество колец при беспорядочной загрузке составляет 53200 шт/м3, свободный объем на 1 м3 насадки равен 0,74 м3/м3.
Необходимую поверхность насадки в метрах определяют из уравнения:
, | (10.6) |
где G – количество удаляемого газа, кг/ч; ΔСср – средняя движущая сила десорбции, кг/м3 , kж – коэффициент десорбции, м/ч.
|
Рис. 10.3. Зависимость средней движущей силы десорбции
от концентрации углекислоты в воде до декарбонизатора
при концентрации СО2 в декарбонизированной воде 3(1), 5(2) и 10(3) мг/дм
G определяют исходя из значений концентрации углекислоты в воде, поступающей в декарбонизатор, СВХ и в декарбонизованной воде СВЫХ и нагрузки декарбонизатора Q:
. | (10.7) |
Значение СВЫХ обычно принимают в пределах 3–10 мг СО2/кг Н2О. Значение СВХ, миллиграмм на кубический дециметр, можно определить по уравнению
(10.8) |
где Жк – карбонатная жесткость воды после предочистки, ммоль/дм3;
СНАЧ – концентрация свободной углекислоты в исходной воде, мг/дм3:
. | (10.9) |
Высота слоя в метрах насадки из колец Рашига определяется из уравнения:
(10.10) |
где v – объем, занимаемый кольцами Рашига при беспорядочной загрузке, м3:
(10.11) |
где 204 – площадь поверхности единицы объема слоя насадки из колец Рашига, м2/м3.
Рис. 10.4. Зависимость коэффициента десорбции
от температуры обрабатываемой воды
На основании расчета необходимо произвести выбор декарбонизатора из выпускаемых промышленностью, при этом необходимо обеспечить 25-процентный запас производительности по воде против расчетного.
10.3. Удаление кислорода физико-химическими методами
Удаление кислорода из воды производится десорбционными (физическими) и химическими методами.
Десорбционный метод удаления кислорода реализуется в термических деаэраторах, в которых происходит нагрев воды паром до температуры ее кипения при одновременном равномерном разбрызгивании жидкости и удалении из нее растворенных газов. В соответствии с законами Генри и Дальтона условиями хорошей работы деаэраторов являются нагревание воды до температуры кипения при давлении, поддерживаемом в аппарате, что обеспечивает практически равенство давления водяных паров общему давлению в газовой фазе, тонкое распыливание и равномерное распределение воды по сечению деаэратора, хорошее удаление паро-воздушной смеси из аппарата (количество выпара должно поддерживаться в пределах 3–5 % расхода греющего пара, что составляет 1–2 кг пара), достаточное время для выделения газов, определяемое правильным выбором размеров деаэраторной головки, равномерную нагрузку аппарата.
10.4. Деаэрация в деаэраторах атмосферного
и пониженного давления
Деаэраторы атмосферного давления, точнее работающие под небольшим избыточным давлением, применяются на ТЭС для деаэрации питательной воды паровых котлов, испарителей, паропреобразователей, подпиточной воды теплосетей (с охлаждением в водо-водяных теплообменниках) (рис. 10.5), а также для предварительной деаэрации загазованных составных частей питательной воды паровых котлов ВД и СВД (обессоленная вода, бойлерный конденсат, дистиллят, дренажи, конденсат из запасных баков – БЗК и др.), если их нельзя направить для предварительной деаэрации в конденсаторы турбин.
Защитные устройства – гидрозатворы – для предотвращения заброса воды из деаэраторного бака во внезапно остановившуюся турбину применяются на ТЭС.
Вакуумная деаэрация может применяться при температуре 40–80 °С и абсолютном давлении 0,0075–0,05 МПа. Вакуум создается и поддерживается водяными эжекторами типов ЭВ-1, ЭВ-75, а при большой производительности (более 400 м3/ч) еще и паровыми эжекторами, например типа ЭП-3-25/75 ХТГЗ, а также вакуум-насосами. Наиболее целесообразна последовательная установка эжекторов: сначала парового (первой ступени), а затем водяного, выполняющего одновременно роль конденсатора. Водяной эжектор работает на деаэрируемой воде, подаваемой затем в деаэратор.
Рис. 10.5. Струйно-барботажный деаэратор атмосферного давления (ДСА-ДА):
1 – деаэраторный бак, 2 – деаэрационная колонка, 3 – барботер "домик", 4, 5 – верхняя и нижняя тарелки, 6 – фланцевый разъем, 7 – гидрозатвор-перелив, 9 – отвод выпара в охладитель, 10 – подвод химически обработанной воды, 11, 12 – подвод холодного и горячего конденсата, 13, 14 – подвод основного и барботажного пара, 15 – отвод деаэрированной воды, 16 – опорожнение, 17 – лестница, 18 – направляющий лист
При коагуляции воды без известкования вакуумный деаэратор может быть установлен на ВПУ после ввода реагентов, так как это позволяет уменьшить содержание в воде кислорода и СО2, выделившейся при коагуляции.
В схемах с параллельным или последовательным Н-Na-катионированием или голодным Н-катионированием деаэратор целесообразно устанавливать вместо декарбонизатора после смешивания кислой воды со щелочной.
В качестве вакуумных, кроме специальных конструкций (рис. 10.6), могут применяться и деаэраторы обычного типа после проверки их прочности и производительности при работе под полным вакуумом и необходимого укрепления стенок деаэраторных баков, а в отдельных случаях и колонок. Могут быть применены и смешивающие деаэраторы-подогреватели конструкции типа Уралэнергочермета (рис. 10.7.). В них вода подогревается и деаэрируется как в струях, так и в водяном объеме путем барботажа. Деаэраторы должны снабжаться автоматическими регуляторами уровня, температуры и вакуума.
Рис.10.6. Вакуум-деаэраторы (по каталогу НИИЭинформэнергомаш):
а) ДСВ-ДВ Q = 25–300 т/ч; б) ДСВ-ДВ Q = 400 т/ч; (одна секция l = 2000 мм); 1 – вход воды; 2 – вход воды из охладителя выпара; 3 – вход пара; 4 – отвод воды ; 5 – ввод конденсата; 6 – выход выпара; 6а – к эжектору; 7 – лаз (d = 400–500 мм); 8 – подвески-стяжки; 9 – охладитель выпара; 10 – подвод и отвод воды в охладитель выпара; 11 – дренаж
Применяя последние конструкции вакуумных деаэраторов большой производительности, можно деаэрировать подпиточную воду тепловых сетей с водогрейными котлами, используя для подогрева пар, получаемый при самоиспарении подогретой прямой сетевой воды. Возможен также подогрев холодной деаэрируемой воды горячей сетевой водой в поверхностных подогревателях с коррозионно-стойкими поверхностями нагрева, а также подогрев-кипячение воды, в деаэраторных баках горячей прямой сетевой водой (взамен парового барботажа).
Основным условием для обеспечения надежной работы вакуумного деаэратора, кроме обеспечения вакуума в соответствии с температурой воды является высокая герметичность, обеспечивающая отсутствие подсосов, особенно в водяной части. Трубопровод от колонки до деаэраторного бака должен быть цельносварным. Отдельную деаэрационную колонку необходимо размещать на высоте
11–12 м (но не менее 4–5 м) над деаэраторным баком, чтобы вода в нем, арматура и насосы находились под давлением. Это дает возможность избежать подсосов воздуха. Если невозможно размещение вакуумно-деаэраторной колонки на такой высоте, необходимо более надежно обеспечить отсутствие подсосов воздуха в агрегате (водяное уплотнение сальников, задвижек, насосов и других приборов и аппаратов установки).
Рис. 10.7. Смешивающий вакуумный струйно-барботажный деаэратор
конструкции Уралэнергочермета:
а), б) – варианты; 1 – корпус (корпус фильтра); 2 – охладитель выпара; 3 – разбрызгивающие тарелки с отверстиями; 4 – подвод пара в барботер; 5 – барботер; 6 – подвод воды; 7 – подвод охлаждающей воды в охладители выпара; 8 – отвод выпара к эжектору;
9 – отвод деаэрированной воды; 10 – разбрызгиватель
В деаэраторные баки воду из колонок следует подводить снизу и организовывать в баках паровую или газовую (азотную) подушку, устанавливать поплавки, применять «одеяла» из герметика и т. д.
Скорости в трубопроводах, подводящих воду в колонки деаэраторов, не должны превышать 1,5 м/с, а отводящих воду – 1 м/с. Скорость в трубопроводах паровоздушной смеси должна быть не более 10 м/с. Для сокращения длины трубопровода, отводящего паровоздушную смесь, и уменьшения объема парогазовой смеси необходимо охладители выпара устанавливать над колонками, а паровые эжекторы – возможно ближе к ним на 5–7 м выше уровня в баке рабочей воды, и на охлаждение подавать наиболее холодную воду.
10.5. Химические методы удаления газов из воды
Химическое связывание кислорода в коррозионно-инертные вещества производится несколькими способами, в основе каждого из которых лежат окислительно-восстановительные процессы. Так как эти процессы характерны еще для целого ряда типичных приемов водообработки, например для очистки от биологических загрязнений, и важны при оценке коррозии конструкционных материалов основного и вспомогательного оборудования, то напомним читателям вначале их основные положения.
Окислительно-восстановительные реакции состоят из процессов окисления (отдачи электронов веществом) и восстановления (получения или смещения электронов к веществу). Вещество, отдающее свои электроны в процессе реакции, называется восстановителем, а вещество, принимающее электроны - окислителем. Некоторые вещества могут существовать в окисленной и восстановленной формах и способны переходить из одной формы в другую, получая электроны или теряя их. За исключением кислорода и водорода, которые в состоянии действовать соответственно только как окислительный и только как восстановительные агенты, остальные вещества в зависимости от условий могут быть либо окислителями, либо восстановителями, что характеризуется окислительно-восстановительным или редокс-потенциалом реакционной системы. Редокс-потенциал зависит от активности окислительной и восстановительной формы в соответствии с уравнением Нернста:
(10.12) |
где n– число электронов, участвующих в окислительно-восстановительной реакции; k–параметр, зависящий от температуры; Еo – стандартный потенциал, определяющий равенство активностей окисленной и восстановленной форм.
Окислительно-восстановительный потенциал служит мерой окислительной и восстановительной способностей системы. Вещество А, имеющее более высокий стандартный потенциал, чем вещество Б, будет последнее окислять, а вещество Б будет восстанавливать вещество А.
Стандартные потенциалы Еo ряда веществ (элементов), используемых в процессах обработки воды (нулевой стандартный потенциал имеет, как известно, водородный электрод), следующие: фтора D ;
хлора D ; озона D ; железа D ; сульфата D ; хрома D ; марганца D D ; кислорода D
Из изложенного видно, что наиболее сильными окислителями являются ионы и , используемые для определения перманганатной или бихроматной окисляемости, а также фтор, озон и хлор.
Химические методы удаления из воды растворенных газов заключаются, как отмечалось, в связывании их в новые химические соединения. Строгое нормирование кислородсодержания при использовании восстановительных водных режимов в контурах ТЭС с барабанными котлами, в теплосетях определяет необходимость использования не только физических методов дегазации, но и химических методов дообескислороживания, основанных на окислительно-восстановительных процессах с участием кислорода и специальных восстановителей.
К числу используемых восстановителей относятся такие реагенты, как сульфит натрия, гидразин и окислительно-восстановительные группы, создаваемые на высокомолекулярных, нерастворимых в воде полимерах (например, на редокс-ионитах).
Обработка воды сульфитом натрия основана на реакции окисления сульфита растворенным в воде кислородом:
. | (10.13) |
Реакция (10.13) протекает достаточно быстро при температуре воды не менее 80 °С и рН ≤ 8. При сульфитировании питательной воды увеличивается ее сухой остаток в количестве 10–12 мг/дм3 на 1 мг/дм3 растворенного кислорода. Следует учитывать также, что при температуре свыше 275 °С, соответствующей давлению насыщения 6 МПа, сульфит подвергается гидролизу и процессу самоокисления-самовосстановления:
D | (10.14) |
D | (10.15) |
что допускает использование этого метода обескислороживания только для котлов среднего давления (3–6 MПа) и для подпиточной воды тепловой сети.
Для прямоточных котлов и барабанных котлов высоких и сверхвысоких параметров применяется обескислороживание воды гидразином в форме гидразин-гидрата , который энергично взаимодействует с кислородом, окисляясь в конечном счете до воды и азота, т. е. не повышая солесодержания воды:
. | (10.16) |
В этой реакции восстановителем является группировка атомов азота , которая отдает четыре электрона молекуле кислорода. Основными факторами, определяющими скорость этой реакции, являются температура, рН среды, избыток гидразина в соответствии с законом действия масс, а также присутствие катализаторов. При комнатной температуре скорость взаимодействия гидразина и кислорода минимальна, но быстро увеличивается с повышением температуры. Так, при t = 105 °С, рН = 9–9,5 и избытке гидразина около 0,02 мг/дм3 время практически полного связывания кислорода составляет 2–3 с. При рН среды менее 7 гидразин практически не окисляется, что связано с его способностью к комплексообразованию и более сложному механизму взаимодействия с кислородом, чем по реакции (10.16). При рН = 9–11 достигается максимум скорости реакции (10.16).
Окисление гидразина кислородом при комнатной температуре может быть интенсифицировано введением органических катализаторов, повышающих скорость взаимодействия в 25–100 раз. В ФРГ активированный гидразин получил товарное наименование левоксина.
Каталитически влияют на скорость реакции также соединения меди и некоторых других металлов.
Гидразин, вводимый в питательную воду или конденсат, взаимодействует с оксидами железа и меди, присутствующими в воде и на поверхности металла, восстанавливая их по следующим суммарным уравнениям:
(10.17) | |
(10.18) | |
(10.19) | |
(10.20) |
В отличие от реакции (10.16) взаимодействие гидразина с оксидами является гетерогенным процессом, на скорость которого кроме температуры и рН оказывают влияние также степень дисперсности твердой фазы (т. е. контакта оксидов с жидкостью) и скорость течения жидкости, которая определяется интенсивностью доставки i гидразина к поверхности частиц. При этом возможно возникновение таких условий, при которых скорость реакций (10.17) – (10.20) превышает скорость реакции (10.16), и реакция гидразина с кислородом будет проходить во вторую очередь, а удаление кислорода из системы станет определяться, например, окислением Fe2+ в Fe3+:
. | (10.21) |
Реакция (10.21) происходит с высокой скоростью даже при комнатной температуре и обусловливает связывание кислорода. Гидразин расходуется лишь на восстановление оксидов и гидроксидов, играющих в этом случае роль своеобразных катализаторов.
В котловой воде и в пароперегревателях избыток гидразина разлагается с образованием аммиака:
. | (10.22) |
Время полураспада гидразина по данным ВТИ
. | (10.23) |
где К – константа скорости реакции разложения при соответствующей температуре. При температурах 60 и 300 °С время полураспада гидразина составляет 308 и 1,5 с.
В присутствии оксидов металлов возможно также разложение гидразина с выделением водорода по реакции
. | (10.24) |
Как отмечалось выше, окислительно-восстановительные реакции с участием кислорода можно осуществить при фильтровании воды через нерастворимые в воде высокомолекулярные вещества, имеющие в своем составе группы, способные к обратимому окислению и восстановлению. Примером таких веществ служат электроноионообменники (ЭИ), используемые, в частности, в схемах обескислороживания добавочной воды тепловых сетей, прошедшей предварительную стадию термической деаэрации. Электроноионообменники получают введением в структуры ионита при синтезе материала или в результате сорбции матрицей редокс-групп. На таких смолах возможно одновременное и независимое протекание ионообменных и окислительно-восстановительных процессов. Получение, например, железооксидозакисного ЭИ на основе катионита осуществляется путем его последовательной и многократной обработки растворами FeSO4 и NaOH с промежуточными отмывками. Этот процесс характеризуется следующими реакциями:
; (10.25)
. (10.26)
При фильтровании через полученный железооксидозакисный ЭИ кислородсодержащей воды протекает окислительно-восстановительная реакция, снижающая концентрацию растворенного кислорода от 100 до 5 мкг/дм3. ЭИ могут быть получены на основе меди и висмута. В связи с тем, что восстановитель в этом случае должен находиться в нулевой валентности, на заключительной стадии для восстановления гидроксидов этих металлов применяют при обработке ЭИ
5-процентный раствор гидросульфита натрия.
Определяющим при выборе типа ионита для посадки на него восстановительно-окислительных веществ является способность матрицы прочно удерживать нанесенные соединения. Эта способность зависит от знака заряда поверхности ионита. Так, отрицательно заряженная фаза катионита с макропористой структурой (типа КУ-23) прочно связывает положительно заряженные гидроксиды металлов, не допуская смывания их в обрабатываемую воду.
Контрольные вопросы
1. Какими методами удаляются основные растворенные газы (О2 и СО2)?
2. Принцип работы и устройства декарбонизатора.
3. Дайте краткое описание и принцип работы деаэратора.
4. Дайте определение веществам, относящимся к окислителям и восстановителям.
5. Какие восстановители применяют для обработки воды?
Глава одиннадцатая
Дата добавления: 2017-03-12; просмотров: 7902;