Производная функции, заданной неявно


Неявная функция-это функции f(x,y)=0, в которой переменные x и y расположены «вперемешку». Например, 4 . Причем никакими способами невозможно выразить «игрек» только через «икс».

Находить производную от функции, заданной неявно, в общем то, не так сложно! Все правила дифференцирования, таблица производных элементарных функций остаются в силе. Разница в одном своеобразном моменте, переменная у воспринимается как сложная функция.

Пример 1. Продифференцируем обе части выражение .

Решение.

=4 2 =

8x =0

Теперь сгруппируем элементы равенства и выразим выражение явно относительно производной y’:

8x =0 или

Таким образом, если предствить функцию в виде F(x.y)=0, то можно записать формулу производной в виде:

Пример 2.

Найти производную от функции, заданной неявно

Навешиваем штрихи на обе части:

Используем правила линейности:

Находим производные:

Раскрываем все скобки:

Переносим все слагаемые с в левую часть, остальные – в правую часть:

В левой части выносим за скобку:

Окончательный ответ:

Правило Лопиталя для нахождения предела функции.

1. Теорема. Предел отношения двух бесконечно малых или бесконечно больших функций равен пределу отношения их производных (конечному или бесконечному), если последний существует в указанном смысле.
т.е. при раскрытии неопределенностей вида или можно использовать формулу:
.
Пример.

= =

Пример: Найти предел .

 

Как видно, при попытке непосредственного вычисления предела получается неопределенность вида . Функции, входящие в числитель и знаменатель дроби удовлетворяют требованиям теоремы Лопиталя.

f¢(x) = 2x + ; g¢(x) = ex;

 

;

 

Пример: Найти предел .

; ;

.

 

Если при решении примера после применения правила Лопиталя попытка вычислить предел опять приводит к неопределенности, то правило Лопиталя может быть применено второй раз, третий и т.д. пока не будет получен результат. Естественно, это возможно только в том случае, если вновь полученные функции в свою очередь удовлетворяют требованиям теоремы Лопиталя.

Пример: Найти предел .

 

; ;

; ;

; ;

 

Следует отметить, что правило Лопиталя – всего лишь один из способов вычисления пределов. Часто в конкретном примере наряду с правилом Лопиталя может быть использован и какой – либо другой метод (замена переменных, домножение и др.).

 

Пример: Найти предел .

; ;

- опять получилась неопределенность. Применим правило Лопиталя еще раз.

; ;

- применяем правило Лопиталя еще раз.

; ;

;

Неопределенности вида можно раскрыть с помощью логарифмирования. Такие неопределенности встречаются при нахождении пределов функций вида , f(x)>0 вблизи точки а при х®а. Для нахождения предела такой функции достаточно найти предел функции lny = g(x)lnf(x).

 

Пример: Найти предел .

 

Здесь y = xx, lny = xlnx.

Тогда .

Следовательно

 

Пример: Найти предел .

 

; - получили неопределенность. Применяем правило Лопиталя еще раз.

; ;



Дата добавления: 2016-06-05; просмотров: 1912;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.