Формула Ньютона-Лейбница.
,
где F(x)-одна из первообразных f(x).
Рассмотрим , он является одной из первообразных f(x), т.е. , где C0 – конкретное значение const. Найдем C0. Подставим вместо верхнего предела x=aÞ ÞC0=-F(a)Þ . Подставим вместо верхнего предела x=bÞ
Формула позволяет вычислять определенный интеграл.
Формула Ньютона-Лейбница дает практически удобный метод вычисления определенных интегралов в том случае, когда известна первообразная подынтегральной функции. Только с открытием этой формулы определенный интеграл смог получить то значение в математике, какое он имеет в настоящее время. Хотя с процессом, аналогичным вычислению определенного интеграла как предела интегральной суммы, были знакомы еще в древности (Архимед), однако приложения этого метода ограничивались теми простейшими случаями, когда предел интегральной суммы мог быть вычислен непосредственно. Формула Ньютона-Лейбница значительно расширила область применения определенного интеграла, так как математика получила общий метод для решения различных задач частного вида и поэтому смогла значительно расширить круг приложений определенного интеграла к технике, механике, астрономии и т.д.
Пример:
.
.
Дата добавления: 2016-06-05; просмотров: 1570;