Сложные эфиры, имеющие приятный аромат


Формула Название Аромат
НСООС2Н5 Этилформиат рома
СзН7СООС2Н5 Этилбутаноат ананаса
НСООС5Н9 Пентилформиат вишни
СН3СООС5Нв Пентилацетат банана
СН3СООС8Н17 Октилацетат апельсина

 

Гидролиз сложных эфиров. Реакция расщепления сложных эфиров на кислоту и спирт при действии воды происхо­дит и в кислой, и в щелочной среде. Однако в присутствии щелочи реакция гидролиза (омыления) необратима, так как получается соль карбоновой кислоты, содержащая устойчивый ацилат-анион:

 
 

Реакция гидролиза сложных эфиров обратима реакции этерификации.

В отличие от обычных сложных эфиров, карбонильный атом уг­лерода в тиоэфирах несет больший положительный заряд, что де­лает их более реакционноспособными. Вследствие этого связь С—S в ацилкоферменте А - макроэргическая. При гидролизе ацетилко-фермента А выделяется даже несколько большая энергия, чем при гидролизе АТФ (AG° = -32,9 и -30,5 кДж/моль соответственно):

 

 
 

ацетилкофермент А уксусная кофермент А

кислота

 

Это обстоятельство способствует активности ацилкоферментов А в реакциях, протекающих в организме с их участием.

Ацилирование спиртов сложными эфирами. Сложные эфиры взаимодействуют со спиртами с образованием нового сложного эфира. Эта реакция называется переэтерификацией, а в биохимии ее называют реакцией трансацилирования. Реакция трансацилирования обычно катализируется ки­слотами, и в этих случаях она обратима

 

 
 

 
 

В организме реакция трансацилирования (переэтерификации) катализируется ферментами трансферазами, которые спо­собствуют переносу ацилов от сложных эфиров на спирты, ами­ны и другие субстраты. Источником ацилов обычно являются ацилкоферменты А, т. е. тиоэфиры карбоновых кислот. Одним из примеров реакции трансацилирования является синтез ацетилхолина с помощью ацетилкофермента А:

 

ацетилкофермент А холин

 
 

ацетилхолин кофермент А

 

 

 
 

Ацилирование аминов сложными эфирами. Сложные эфиры взаимодействуют с аммиаком или аминами (ре­акция аминолиза) с образованием амидов соответствующих карбоновых кислот:

 

Кроме реакций нуклеофильного замещения (гидролиза и ацилирования) молекулы сложных эфиров вступают в реакции конденсации друг с другом с образованием связи С—С. В образо­вании новой связи участвуют углеродный атом карбонильной группы одной молекулы эфира и α-углеродный атом другой мо­лекулы эфира. Эта реакция конденсации (С-ацилирования) со­провождается окислительно-восстановительными превращения­ми.

Амиды . В молекулах амидов имеет место сопряжение неподеленной электронной пары атома азота с π-системой двойной связи С=О (р, π-сопряжение). В результате связь С—N в амидах становится короче, чем в аминах, а длина связи С=О такая же, как в карбоновых кислотах, где имеет место анало­гичное р, л-сопряжение. Благодаря сопряжению атомы амидной группировки находятся в одной плоскости и вращение по амидной связи С—N в значительной степени за­торможено, так как эта связь имеет частично характер двойной связи.


Основность амидов [рКа(ВН+) = 0 ÷ -2] выше, чем сложных эфиров [рКа(ВН+) = -5 ÷ -6]. В то же время их основность значи­тельно меньше основности аминов [рКа(ВН+) = 5 ÷ 10] ввиду иной гибридизации атомных орбиталей атома азота, способствующей сильному взаимодействию неподеленной электронной пары атома азота с двойной связью карбонильной группы. Если в молекуле амида имеется связь N—Н, то возможна его кислот­ная ионизация. Амиды являются слабыми NH-кислотами (рКа = = 13 ÷ 15), и их кислотность сравнима с кислотностью спиртов.

анион амида амид катион амида

 


Реакции нуклеофильного замещения. Амиды в присутствии щелочи или кислоты легко гидролизуются:

 

В кислой среде вследствие протонирования молекула амида активируется и может ацилировать спирты, образуя сложный эфир карбоновой кислоты и амин:


 

 


Реакции с электрофильными реагентами. Электрофильные реагенты атакуют в амидах кислородный атом карбонильной группы. Так, при нагревании амидов с сильными электрофилами (P2O5, РОС13) происходит внутримолекулярное отщепление молекулы воды с образованием нитрилов карбоновых кислот:

ацетамид ацетонитрил

 

 

§ 5.6. Отдельные представители амидов кислот.

(Материал для самостоятельной подготовки)

 

Амиды угольной кислотыимеют очень большое значение. Как и все двухосновные кислоты угольная кислота дает неполный амид, называемый карбаминовой кислотой, и полный амид, называемый мочевиной H2N-C-NH2.

׀׀

О

Мочевина в организме человека и млекопитающих животных является конечным продуктом азотистого обмена. Такие азотистые вещества, как белки и амирокислоты, претерпев в организме ряд превращений, в конце концов, выделятся с мочой в виде мочевины. В течение суток организм человека выделяет с мочой 20-30 г мочевины.

В настоящее время в медицине применяют ряд ценных лекарственных веществ, в основе которых лежат амиды кислот, такие как бутамид, букарбан, хлорпропамид, глибенкламид и др., которые используются в качестве противодиабетических препаратов. Мочевина применяется как осмотический диуретик.

Очень важное значение амиды имеют в стоматологической практике. Большинство стоматологических вмешательств сопровождается болевыми ощущениями большей или ме- ньшей интенсивности, поэтому анестезия – одна из наиболее актуальных прблем стоматологии. Учитывая высокую потребность в более совершенных местнообезболивающих препаратах, их разрабатывают ученые всех стран мира. Изучение полученных средств позволило заключить, что более длительно воздействуют местные анестетики группы амидов. В 1946 году шведскими учеными Lofgren и Lundquist был синтезирован местный анестетик, относящийся к группе амидов - ксилокаин (лидокаин), который сразу же стал вытеснять новокаин.Спустя несколько лет были синтезированы меливакаини в 1976 году – артикаин (ультракаин) – анестетик с уникальными свойствами. Ультракаин позволяет не только качественно и длительно обезболить стоматологическую процедуру, но и сократить количество посещений врача. Артикаин в 5 раз сильнее новокаина и в 2-3 раза сильнее популярных лидокаина и тримекаина. При некоторых видах анестезии длительность эффекта достигает 5-6 часов. Низкая токсичность ультракаина, безопасность и хорошая переносимость позволяет осуществлять длительные процедуры с его использованием.

Нитрилы R—C=N. Нитрилы являются очень слабыми N-ocнованиями [рКа(ВН+) ≈ -10], поскольку их атом азота имеет sp-гибридизацию. Поэтому он более электроотрицателен и зна­чительно сильнее удерживает свою неподеленную электронную пару, чем атом азота в других азотсодержащих соединениях.

Нитрилы легко подвергаются гидратации в кислой или ще­лочной среде за счет нуклеофильного присоединения воды к сильнополярной тройной связи C=N с образованием амида со­ответствующей кислоты.

Ацилирующего действия нитрилы не проявляют. Подобно другим производным карбоновых кислот нитрилы за счет α-водородного атома являются слабыми С—Н-кислотами, образую­щими карбанион на α-углеродном атоме. Такой карбанион лег­ко присоединяется к карбонильным соединениям по реакции типа альдольной конденсации.



Дата добавления: 2019-09-30; просмотров: 401;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.011 сек.