Производственная функция вида Кобба - Дугласа


 

Пример 2.Для моделирования отдельного региона или страны в целом часто используются ПФ вида , где а0 , а1 , а2параметры ПФ. Это положительные постоянные, часто а1 и а2 а1 + а2 = 1.

ПФ приведенного вида называется ПФ Кобба-Дугласа (ПФКД) по имени двух американских экономистов (1929г).

ПФКД активно используется для решения разнообразных теоретических и прикладных задач благодаря своей структурной простоте.

ПФКД принадлежит к классу мультипликативных ПФ(МПФ).

В приложениях ПФКД:

х1 =K- объём используемого основного капитала (объём используемых основных фондов),

х2= L- затраты живого труда.

Тогда ПФКД примет вид:

.

 

 

Графиком ПФ , (а12=1) в трехмерном пространстве является двумерная поверхность G, эскиз который представлен на рисунке 5.

 

 

g

(x1,x02,y)

x2

 

x02

(x1,x02)

x1

 

 

x1

 

рис.5

 

График G в рассматриваемом случае есть коническая поверхность, направляющей которой является линия L, а образующими - лучи, выходящие из точки 0.

Пусть , тогда и мы получаем вариант ПФ, аналогичный рассмотренному на рис. 4 и на рис. 6.

Линия g есть пересечение поверхности G вертикальной плоскостью. .

На рис. 6 представлен фрагмент рис. 5, относящийся к линии g.

Поведение линии g отражает то обстоятельство, что с ростом затрат первого ресурса объём выпуска y растёт, но каждая дополнительная единица первого ресурса обеспечивает всё меньший прирост выпуска y.

Это обстоятельство можно интерпретировать так: если число работников и их квалификация остаются неизменными, а число обслуживаемых ими станков увеличивается, например, в два раза, то это не приведёт к двойному росту объёма выпуска.

Если , то графиком функции G ПФКД является поверхность, которая напоминает выпуклую вверх «горку», крутизна которой падает, если точки перемещается на «северо-восток» по плоскости .



Дата добавления: 2021-02-19; просмотров: 333;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.