Первая интерполяционная формула Ньютона.
Пусть для функции заданы значения для равноотстоящих узлов , где - шаг интерполяции.
Необходимо подобрать полином
(1)
Условия (1) эквивалентны тому, что
, при .
Следуя Ньютону, будем искать полином в виде
(2)
Т.о. задача сводится к определению коэффициентов в выражении (2).
Полагая , получим .
Далее находим первую конечную разность и полагая , получим
Откуда:
Беря затем вторые разности и т.д., получаем:
Введем в рассмотрение новую переменную
- число шагов, необходимых для достижения точки из точки
( ), получим
(3)
первая интерполяционная формула Ньютона, которая применяется для интерполирования функций , в окрестности начального значения , где q мало по абсолютной величине!
Если в (3) положить n=1, то получим формулу линейного интерполирования
(4)
При n=2 – формулу параболического или квадратичного интерполирования.
Если дана неограниченная таблица , то n выбирают так, чтобы .
Если таблица конечна, то n не может превышать k-1, где k – число строк таблицы.
При применении 1-ой интерполяционной формулы Ньютона удобно пользоваться горизонтальной таблицей разностей.
Пример: Построить на отрезке [3,5;3,7] интерполяционный полином Ньютона для функции , заданной таблицей, с шагом h=0,05.
3,50 | 3,55 | 3,60 | 3,65 | 3,70 | |
33,115 | 34,813 | 36,598 | 38,475 | 40,447 |
Решение: составляем таблицу разностей
3,50 3,55 3,60 3,65 3,70 | 33,115 34,813 36,598 38,475 40,447 | 1,698 1,785 1,877 1,972 | 0,087 0,092 0,095 | 0,005 0,003 |
Т.к. то n=3.
или
где
Можно упорядочить полином по степеням х, подставив значение q.
ЛЕКЦИЯ 9
Интерполирование функций. (Продолжение)
Дата добавления: 2016-11-04; просмотров: 3492;