Приближенное вычисление по формулам прямоугольников, трапеции, Симпсона
Сначала зададимся вопросом, а зачем вообще нужны приближенные вычисления? Вроде бы можно найти первообразную функции и использовать формулу Ньютона-Лейбница, вычислив точное значение определенного интеграла. В качестве ответа на вопрос сразу рассмотрим демонстрационный пример с рисунком.
Вычислить определенный интеграл
Всё было бы хорошо, но в данном примере интеграл не берётся – перед вами неберущийся, так называемый интегральный логарифм.
Существуют несколько основных методов приближенного вычисления определенного интеграла, который встречается в задачах:
Метод прямоугольников. Отрезок интегрирования разбивается на несколько частей и строится ступенчатая фигура, которая по площади близка к искомой площади:
В данном примере проведено разбиение отрезка интегрирования на три отрезка:
. Очевидно, что чем чаще разбиение (больше более мелких промежуточных отрезков), тем выше точность.
Метод трапеций. Идея аналогична. Отрезок интегрирования разбивается на несколько промежуточных отрезков, и график подынтегральной функции приближается ломанойлинией:
Метод Симпсона (метод парабол). Это более совершенный способ – график подынтегральной функции приближается не ломаной линией, а маленькими параболками. Сколько промежуточных отрезков – столько и маленьких парабол. Если взять те же три отрезка, то метод Симпсона даст ещё более точное приближение, чем метод прямоугольников или метод трапеций.
Дата добавления: 2021-01-26; просмотров: 337;