Интегрирование по методу Симпсона.


 

Пусть n = 2m − чётное число, а уi = f(xi) (i = 0..n) − значения функции у = f(x) для равноотстоящих точек a = x0, x1, x2, …, xn = b с шагом h =(b-a)/n = (b-a)/2m. На паре участков (рис.3) кривая у = f(x) заменяется параболой у = L(x), коэффициенты которой подобраны так, что она проходит через точки у0, у1, у2.

Рис.3 Геометрическая интерпретация интегрирования по методу Симпсона.

 

Площадь криволинейной трапеции, ограниченной сверху параболой, составит:

.

Суммируя площади всех криволинейных трапеций, получим:

 

Где p = 6-p, p = 4. Следовательно, формула Симпсонадля численного интегрирования имеет вид:

 

(9)

 

Остаточный член имеет вид: (10)

На практике для оценки абсолютной погрешности формулы Симпсона применяют следующие соотношения:

1. , (11)

При этом, как правило, получают для завышенную оценку.

2. Правило Рунге (n − чётное) даёт более тонкую оценку :

(12)

Но при этом может получиться для заниженная оценка, чего следует опасаться.

 

Формулы прямоугольников и трапеций дают точное значение интеграла, когда подынтегральная функция f(x) линейна, ибо тогда f ″(x) = 0, а формула Симпсона является точной для многочленов до третьей степени, т. к. в этом случае f (4) = 0.

Если функция у = f(x) задана таблично и её производные найти затруднительно, то в предполо- жении отсутствия быстро колеблющихся составляющих можно применить приближённые формулы для погрешностей, выраженные через конечные разности:

(*)

 

(**)

Выбор шага

1. Пусть требуется вычислить интеграл с точностью ε. Используя формулу соответствующего остаточного члена R, выбирают h таким образом, чтобы выполнялось неравенство .

2. Двойной пересчёт. ( Правило Рунге).

 

 

Лекция 4

ЧИСЛЕННОЕ РЕШЕНИЕ ТРАНСЦЕНДЕНТНЫХ И НЕЛИНЕЙНЫХ УРАВНЕНИЙ.

 

Если алгебраическое или трансцендентное уравнение достаточно сложное, то его корни сравнительно редко удаётся найти точно. Поэтому большое значение приобретают способы приближённого нахождения корней уравнения и оценки степени их точности.

Процесс нахождения приближённых значений корней уравнения:

f(x) = 0, (1)

где функция f(x) определена и непрерывна в некотором конечном или

бесконечном интервале a < x < b разбивается на два этапа: 1) отделение корней; 2) уточнение корней до заданной степени точности.

 

Отделение корней.

 

Всякое значение λ, обращающее функцию f(x) в нуль, т. е. такое, что f(λ) = 0, называется корнем уравнения (1) или нулём функции f(x).

Отделить корни − это значит разбить всю область допустимых значений на отрезки, в каждом из которых содержится один корень. Отделение корней можно произвести двумя способами − графическим и аналитическим.

 

Графический метод отделения корней: a) строят график функции у = f(x) для уравнения вида f(x) = 0. Значения действительных корней уравнения являются абсциссы точек пересечения графика функции у = f(x) с осью Ох (рис.1);

b) представляют уравнение (1) в виде φ(х) = g(x) и строят графики функций

у = φ(х) и у = g(x). Значения действительных корней уравнения являются абсциссы точек пересечения графиков функций у = φ(х) и у = g(x) (рис.2).

Отрезки, в которых заключено только по одному корню, легко находятся.

 

 

 


Рис.1. Рис.2.

Аналитический метод отделения корней основан на следующей теореме:

если непрерывная на отрезке функция принимает на концах отрезка значения разных знаков, т.е. , то внутри этого отрезка находится хотя бы один корень уравнения ; если при этом

производная сохраняет знак внутри отрезка , то корень является единственным.

 



Дата добавления: 2020-10-14; просмотров: 462;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.013 сек.