Метод Ньютона (касательных).


 

Пусть на отрезке [a,b] функция f(x) непрерывна и принимает на концах отрезка значения разных знаков, а производные f ′(x) и f ″(x) сохраняют постоянный знак на интервале (a,b).

Геометрический смысл метода касательных состоит в том, что дуга кривой

y = f(x) заменяется касательной к этой кривой.

Рис.7.Иллюстрация метода касательных.

 

Выберем в качестве начального приближения х0 = a и проведём в точке А0(a,f(a)) касательную к графику функции f(x). Абсцисса пересечения касательной с осью Ох (у = 0) является первым приближением к корню (рси.7):

или х0 = .

Через точку А11;f(x1)) снова проведём касательную, абсцисса точки пересечения которой даст второе приближение х2 корня ξ и т.д. Очевидно, что в точке Аn(xn;f(xn)):

y − f(xn) = f ′(xn)(x−xn)

и алгоритм метода Ньютона запишется так:

 

(4)

Заметим, что в нашем случае, если положить х0 = b и провести касательную к кривой у = f(x) в точке b, то первое приближение не принадлежит отрезку [a,b].

 

Таким образом, в качестве начального приближения х0 выбирается тот конец интервала [a,b], для которого знаки f(x) и f ″(x) одинаковы.

 

Условие окончания вычислений: │сn+1 − cn│< ε или │f(cn)│< ε1.

 

Для оценки погрешности можно пользоваться общей формулой

, где

 



Дата добавления: 2020-10-14; просмотров: 400;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.