Принятые в машиностроении знаки поперечных сил и изгибающих моментов
Знаки поперечных сил
Поперечная сила в сечении считается положительной, если она стремится развернуть сечение по часовой стрелке (рис. 29.4а), если против, — отрицательной (рис. 29.4б).
Знаки изгибающих моментов
Если действующие на участке внешние силы стремятся изогнуть балку выпуклостью вниз, то изгибающий момент считается положительным (рис. 29.5а), если наоборот — отрицательным (рис. 29.5б).
Выводы
При чистом изгибе в поперечном сечении балки возникает только изгибающий момент, постоянный по величине.
При поперечном изгибе в сечении возникает изгибающий момент и поперечная сила.
Изгибающий момент в произвольном сечении балки численно равен алгебраической сумме моментов всех внешних сил, приложенных к отсеченной части, относительно рассматриваемого сечения.
Поперечная сила в произвольном сечении балки численно равна алгебраической сумме проекций всех внешних сил, действующих на отсеченной части, на соответствующую ось.
Пример 2. На балку действует пара сил с моментом т и распределенная нагрузка интенсивностью q. Балка защемлена справа
Рассечем балку на участке 1 на расстоянии z1 от левого края. Рассмотрим равновесие отсеченной части. Из уравнения
получим:
Участок 1 — участок чистого изгиба.
Рассечем балку на участке 2 на расстоянии z2 > а от края, z2 — расстояние сечения от начала координат.
Из уравнения ΣFy = 0 найдем поперечную силу Q2. Заменяем распределенную нагрузку на рассматриваемом участке равнодействующей силой q(z2 — а).
Из уравнения моментов определяем изгибающий момент в сечении:
На втором участке возникает поперечный изгиб.
Выводы
При действии распределенной нагрузки возникает поперечная сила, линейно зависящая от координаты сечения.
Изгибающий момент на участке с распределенной нагрузкой меняется в зависимости от координаты сечения по параболическому закону.
Дата добавления: 2020-08-31; просмотров: 430;