Тема 2.6. Изгиб. Построение эпюр поперечных сил и изгибающих моментов. Приложены сосредоточенные и распределенные нагрузки.


Знать дифференциальные зависимости между интенсивно­стью распределенной нагрузки, поперечной силой и изгибающим моментом, основные правила построения эпюр.

Уметь строить эпюры поперечной силы и изгибающего момен­та в случае приложения сосредоточенных и распределенных нагру­зок.

 

Примеры решения задач

 

Пример 1. Одноопорная балка нагружена сосредоточенными силами и распределенной нагрузкой (рис. 31.1). Построить эпюры поперечных сил и изгибающих моментов.

Решение

Задачу решаем с помощью составления уравнений поперечных сил и изгибающих моментов в поперечных сечениях балки.

При проверке эпюр используем дифференциальные зависимости между интенсивностью распределенной нагрузки, поперечной силой и изгибающим моментом:

1. Производная от поперечной силы по длине балки равна ин­тенсивности распределенной нагрузки

2. Производная изгибающего момента по длине балки равна по­перечной силе

Рассмотрим участок 1, сечение 1. Поперечная сила Q1 = - F1 = —15 кН.

По принятому правилу знаков поперечная сила отрицательна и постоянна на этом участке.

Изгибающий моментMXl= —F1 z1.

0 ≤ z1 ≤ 4м: МА = 0; МВ = -15*4 = - 60кН*м.

 

Рассмотрим участок 2, сечение 2. Поперечная сила

Q2 = — F1 — q(z2 — 4).

4м ≤ z2 ≤ 8м:

QB = - F1 = -15кН;

Поперечная сила изменяется по линейному закону.

 

 

Изгибающий момент

:

4м ≤ z2 ≤ 8м:

при z2 = 4м изгибающий момент МВ = — 60кН • м. В точке В нет внешнего момента, поэтому изгибающий момент слева и справа от точки В одинаков. В этом случае рассчитывать его дважды не следует;

 

Рассмотрим участок 3, сечение 3.

В точке С приложена внешняя силаF2. На эпюре должен быть скачок, равный приложенной силе; на эпюре моментов должен быть излом.

Поперечная сила на участке 3: Q3 = —F1 — q(z3 — 4) — F2;

при z3 = 10 м QD = -15 – 6*6 - 10 = - 61 кH.

Поперечная сила изменяется по линейному закону.

Изгибающий момент .

8 м ≤ z2 ≤ 10 м:

при z3 = 10 м

На участках 2 и 3 эпюра изгибающих моментов ограничена квад­ратичной параболой.

По полученным результатам, учитывая дифференциальные за­висимости между поперечной силой и изгибающим моментом, стро­им эпюры Q и Мх. На втором и третьем участках поперечная сила не имеет нулевых значений, поэтому на эпюре моментов нет экс­тремумов.



Дата добавления: 2020-08-31; просмотров: 478;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2025 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.