Двухфакторные и многофакторные уравнения регрессии
Линейное двухфакторное уравнение регрессии имеет вид:
,
где - параметры;
– экзогенные переменные;
y – эндогенная переменная.
Идентификацию этого уравнения лучше всего производить с использованием функции Excel ЛИНЕЙН.
Степенное двухфакторное уравнение регрессии имеет вид:
где - параметры;
– экзогенные переменные;
Y – эндогенная переменная.
Для нахождения параметров этого уравнения его необходимо прологарифмировать. В результате получим:
.
Идентификацию этого уравнения также лучше всего производить с использованием функции Excel ЛИНЕЙН. Следует помнить, что мы получим не параметр a, а его логарифм, которое следует преобразовать в натуральное число.
Линейное многофакторное уравнения регрессии имеет вид:
где n- параметры;
n – экзогенные переменные;
y – эндогенная переменная.
Идентификацию этого уравнения также лучше всего производить с использованием функции Excel ЛИНЕЙН.
Заключение
Объектом изучения эконометрики, как самостоятельного раздела математической экономики, являются экономико-математические модели, которые строятся с учетом случайных факторов. Такие модели называются эконометрическими моделями. Исследование эконометрических моделей проводится на основе статистических данных об изучаемом объекте и с помощью методов математической статистики.
Основными задачами эконометрики являются: получение наилучших оценок параметров экономико-математических моделей, конструируемых в прикладных целях; проверка теоретико-экономических положений и выводов на фактическом (эмпирическом) материале; создание универсальных и специальных методов для обнаружения статистических закономерностей в экономике.
Для установления статистической зависимости (уравнения регрессии) между изучаемым экономическим показателем (объясняемой переменной) и влияющими на нее факторами (объясняющими переменными) проводится регрессионный анализ. Такой анализ предполагает идентификацию объясняющих переменных, спецификацию формы искомой связи между переменными, определение и оценку конкретных числовых значений параметров уравнения регрессии.
Для выявления тесноты связи между экономическими величинами в уравнении регрессии проводится корреляционный анализ. В ходе корреляционного анализа изучается сила влияния различных причин (последствия линейной регрессии и влияние неучтенных в модели факторов) вариации объясняемой переменной.
Контрольные вопросы к теме №2
1. Определение корреляционной зависимости.
2. Корреляционный и регрессионный анализ.
3. Уравнения регрессии их основные типы и свойства.
4. Определение параметров линейного однофакторного уравнения регрессии.
5. Понятие коэффициента корреляции и его основные свойства.
6. Как определяются погрешности коэффициентов уравнения регрессии.
7. В чем состоит проблема автокорреляции остатков.
8. Сформулируйте критерий Дарбина-Уотсона.
9. Многофакторные уравнения регрессии.
Дата добавления: 2016-05-30; просмотров: 3109;