Оценка величины погрешности линейного однофакторного уравнения


Обозначим разность между фактическим значением результативного признака и его расчетным значением как :

, где

фактическое значение y;

расчетное значение y,

разность между ними.

 

2. В качестве меры суммарной погрешности выбрана величина:

.

Для нашего примера S = 0.432.

Поскольку (среднее значение остатков) равно нулю, то суммарная погрешность равна остаточной дисперсии:

 

3. Остаточная дисперсия находится по формуле:

 

 

Для нашего примера . Можно показать, что

.

Если то

то

Таким образом, .

Легко заметить, что если , то

Это соотношение показывает, что в экономических приложениях допустимая суммарная погрешность может составить не более 20% от дисперсии результативного признака .

4. Стандартная ошибка уравнения находится по формуле:

, где

– остаточная дисперсия. В нашем случае .

5. Относительная погрешность уравнения регрессии вычисляется как:

где стандартная ошибка;

– среднее значение результативного признака.

В нашем случае = 7.07%.

Если величинамала и отсутствует автокорреляция остатков, то прогнозные качества оцененного регрессионного уравнения высоки.

6. Стандартная ошибка коэффициента b вычисляется по формуле:

В нашем случае она равна .

Для вычисления стандартной ошибки коэффициента aиспользуется формула:

В нашем примере .

Стандартные ошибки коэффициентов используются для оценивания параметров уравнения регрессии.

Коэффициенты считаются значимыми, если

В нашем примере

Коэффициент ане значим, т.к. указанное отношение больше 0.5,а относительная погрешность уравнения регрессии слишком высока – 26.7%.

Стандартные ошибки коэффициентов используются также для оценки статистической значимости коэффициентов при помощи t – критерия Стьюдента. Значения t – критерия Стьюдента содержатся в справочниках по математической статистике. В таблице 2.1 приводятся его некоторые значения.

Далее находятся максимальные и минимальные значения параметров ( ) по формулам:

Таблица 2.1



Дата добавления: 2016-05-30; просмотров: 2138;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.