Интегрирование элементарных дробей
Элементарныминазываются дроби следующих четырех типов:
I. II. III. IV.
m, n – натуральные числа (m ³ 2, n ³ 2) и b2 – 4ac <0.
Первые два типа интегралов от элементарных дробей довольно просто приводятся к табличным подстановкой t = ax + b.
I.
II.
Рассмотрим метод интегрирования элементарных дробей вида III.
Интеграл дроби III вида может быть представлен в виде:
Пример.
Т.к. , , то
Пример.
Т.к. , то
Пример.
,
=
Пример.
Пример.
Рассмотрим теперь методы интегрирования простейших дробей IV типа.
Сначала рассмотрим частный случай при М = 0, N = 1.
Тогда интеграл вида можно путем выделения в знаменателе полного квадрата представить в виде . Сделаем следующее преобразование:
.
Второй интеграл, входящий в это равенство, будем брать по частям.
Обозначим:
Для исходного интеграла получаем:
Полученная формула называется рекуррентной. Если применить ее n-1 раз, то получится табличный интеграл .
Вернемся теперь к интегралу от элементарной дроби вида IV в общем случае.
В полученном равенстве первый интеграл с помощью подстановки t = u2 + s приводится к табличному , а ко второму интегралу применяется рассмотренная выше рекуррентная формула.
Несмотря на кажущуюся сложность интегрирования элементарной дроби вида IV, на практике его достаточно легко применять для дробей с небольшой степенью n, а универсальность и общность подхода делает возможным очень простую реализацию этого метода на ЭВМ.
Пример:
Дата добавления: 2020-06-09; просмотров: 441;