Лекция 9 Формула Стокса.
Ротор векторного поля.
Назовем ротором векторного поля вектор
Свойства ротора.
1) Линейность
= +
= .
2) - постоянное векторное поле.
3)
=
+ = .
Теорема Стокса.
Пусть пространственно односвязная область V содержит кусочно-гладкую поверхность с кусочно-гладкой границей .
Пусть компоненты векторного поля непрерывны и имеют непрерывные частные производные по своим аргументам до второго порядка включительно в области V.
Тогда справедлива формула Стокса
Замечание. Нормаль к поверхности проведена так, чтобы наблюдатель, находясь на конце вектора нормали, видел бы обход контура , совершающимся в положительном направлении (так, чтобы область, границей которой является контур, при обходе контура находилась бы «по левую руку»).
Доказательство теоремы Стокса.
Как и формула Остроградского – Гаусса, формула Стокса состоит из трех независимых частей (в силу произвольности компонент векторного поля). Докажем одну из этих частей, остальные формулы доказываются аналогично. Докажем - часть формулы Стокса, в которой содержится только компонента P. Предположим, что поверхность описывается уравнением . Тогда нормаль к поверхности |
представляет собой вектор
Отсюда видно, что . Вспомним еще, что .
(на поверхности , поэтому под интегралом стоит частная производная P по y с учетом зависимости z от y на поверхности )
=
Используем формулу Грина для области D с ее границей . Ее можно записать в виде
. Нам понадобится только та ее часть, которая относится к функции P . Продолжаем равенство дальше.
= .
В самом деле, на контуре , а переменные x, y на том и другом контуре те же, так как контур - это проекция контура на плоскость OXY (параллельно оси OZ).
Одна из частей формулы Стокса доказана.
Линейным интеграломвекторного поля по дуге L называется криволинейный интеграл .
Линейный интеграл имеет смысл работы векторного поля при перемещении по дуге.
Циркуляциейвекторного поля называется линейный интеграл по замкнутому контуру.
.
Вводя эти понятия, можно записать формулу Стокса в «полевой» форме
.
Мы определили ротор векторного поля в декартовой системе координат, однако ротор – это характеристика самого векторного поля Поэтому необходимо дать определение ротора, которое не зависит от выбора системы координат.
Инвариантное определение ротора.
Рассмотрим произвольную точку M в области V. Проведем через нее поверхность , границей которой служит контур . Пусть поверхность и контур удовлетворяют условиям теоремы Стокса. По теореме о среднем для поверхностного интеграла и формуле Стокса получим
.
Здесь, как и ранее - обозначение области и ее площади. Из этого соотношения, стягивая контур к точке M, получим
Это и есть инвариантное определение ротора.
Правая часть формулы – это поверхностная плотность циркуляции векторного поля (энергии в точке M вращения векторного поля или работы векторного поля при вращении вокруг некоторого направления, определяемого вектором ). Левая часть – это проекция ротора на это направление.
Если направление совпадает с направлением ротора и - единичный вектор, то левая часть равна модулю ротора. Поэтому модуль ротора векторного поля равен максимальному значению поверхностной плотности циркуляции векторного поля.
Левая часть достигает максимума при коллинеарности направления и ротора векторного поля. Поэтому направление ротора векторного поля – это то направление, вокруг которого поверхностная плотность циркуляции векторного поля – наибольшая.
Пример. Найти ротор линейной скорости вращения с постоянной угловой скоростью
Векторное поле линейной скорости .
,
Ранее была сформулирована теорема о полном дифференциале для пространственной кривой. В ее доказательстве не хватало только одного пункта – перехода от пункта 3) к пункту 2). Все остальное доказывается аналогично случаю плоской кривой.
Дата добавления: 2017-11-21; просмотров: 3049;