Скалярное и векторное поля.
Говорят, что в области (плоской или пространственной) задано скалярное полеj (M), если в этой области задана скалярная функция j (M).
Говорят, что в области (плоской или пространственной) задано векторное поле (M), если в этой области задана векторная функция (M).
Например, масса или температура частиц в комнате – скалярные поля, скорость или силы взаимодействия частиц – векторные поля.
В интегралах первого рода :двойных, криволинейных, поверхностных мы имели дело со скалярным полем – распределением масс точек кривой или поверхности в пространстве.
В интегралах второго рода вычислялись характеристики векторных полей: работа векторного поля (силового поля) в криволинейном интеграле, поток векторного поля в поверхностном интеграле.
Рассмотрим подробнее основные характеристики скалярных и векторных полей.
Скалярные поля.
Линии уровня плоского поля j (x, y) – кривые, на которых значения функции постоянны j (x, y) = С.
Например, линии равной высоты, нанесенные на географической карты (h (x, y) = 0 – уровень моря, h = 7000м – немногие горные вершины, h = - 10000м – самые глубокие океанские впадины).
Поверхности уровня пространственного поля j (x, y, z) – поверхности, на которых значения функции постоянны j (x, y, z) = С.
Например, поверхности равной температуры или давления в атмосфере. Любая линия на поверхности уровня – это линия уровня.
Пример. Задано поле . При С > 0 поверхности уровня – однополостные гиперболоиды, при С = 0 поверхность уровня – конус, при С < 0 поверхности уровня – двуполостные гиперболоиды.
Линии или поверхности различных уровней не пересекаются.
Чем чаще (гуще) поверхности или линии уровня, тем интенсивнее изменение поля.
Градиент поля – вектор .
Утверждение. Градиент скалярного поля ортогонален его поверхности уровня.
Доказательство. Пусть точка (x, y, z) остается на поверхности уровня g(x, y, z) = 0 при вариациях переменных. Тогда равенство превращается в тождество, а тождество можно дифференцировать.
.
Вектор (x, y, z) - это вектор, касательный в точке (x, y, z) к любой кривой, лежащей на поверхности уровня, проходящей через эту точку. Поэтому в точке (x, y, z) вектор градиента ортогонален всем касательным к линии уровня, проходящим через эту точку. Следовательно, он ортогонален касательной плоскости к поверхности уровня и направлен по нормали к поверхности уровня.
Производная скалярного поля по направлению определяется как . Известно из теории функций многих переменных (выпуск V учебника), что производная по направлению есть проекция градиента на данное направление
.
Пример. Найти производную скалярного поля g(x, y, z) = x2 + y2 + z3 по направлению {1,3,2} в точке (1,0,4)
.
Векторное поле.
Векторная линия -линия, в каждой точке которой вектор поля направлен по касательной к ней.
Уравнения векторной линии легко получить из условия коллинеарности векторов поля и касательной
.
Пример. Написать уравнения векторных линий векторного поля
- линии уровня – окружности (С>0).
Векторной трубкойназывается поверхность, образованная векторными линиями.
Дата добавления: 2017-11-21; просмотров: 1204;