Основные свойства (теоремы) преобразования Лапласа
1. Линейность преобразования. Для любых постоянных и
. (2.8)
2. Дифференцирование оригинала. Если производная является функцией-оригиналом, т.е. обладает указанными тремя свойствами, то , где = , . И вообще, если n-я производная является функцией-оригиналом, то
,
где , k=0,1,…n-1.
Если начальные условия нулевые, т.е. , то последняя формула принимает вид:
. (2.9)
Таким образом, при нулевых начальных условиях дифференцированию соответствует умножение изображения на р.
3. Интегрирование интеграла. Интегрирование оригинала сводится к делению изображения на р:
. (2.10)
4. Теорема запаздывания. Для любого положительного числа
. (2.11)
5. Теорема умножения изображения. Если и – оригиналы, и – их изображения, то
. (2.12)
Интеграл правой части равенства называют сверткой функций и и обозначают:
= .
6. Теоремы о предельных значениях. Если – оригинал, а – его изображение, то
, (2.13)
и при существовании предела
. (2.14)
7. Теорема разложения. Если изображение сигнала представляет собой дробно-рациональное выражение, т.е.
,
причем степень полинома числителя меньше степени полинома знаменателя и все n корнейуравнения простые, то для нахождения оригинала, соответствующего изображению , может быть использована формула (формула разложения):
(2.15)
где - корень уравнения , .
В таблице 2.1 приведены выражения изображения Лапласа для некоторых типовых сигналов.
Таблица 2.1
Изображения по Лапласу типовых сигналов
Оригинал | Изображение | Оригинал | Изображение |
δ(t) | |||
1(t) | sin( ) | ||
cos( ) | |||
Применяя преобразование Лапласа к дифференциальному уравнению (2.5) и считая начальные условия нулевыми, получим следующее операторное уравнение, связывающее изображения входного и выходного сигналов системы:
..+ + +..+ (2.16)
или
,
где А(p) = ; В(р)= .
Введем в рассмотрение передаточную функцию звена (или системы) равную отношению изображения по Лапласу выходного сигнала к изображению по Лапласу входного сигнала при нулевых начальных условиях:
. (2.17)
Из выражений (2.16) – (2.17) следует, что и
. (2.18)
Выражение (рис. 2.18) связывает изображение выходного сигнала системы с изображением входного сигнала. Передаточная функция W(p) характеризует динамические свойства САУ, она не зависит от входного сигнала и полностью определяется коэффициентами и , а те, в свою очередь, – параметрами и структурой системы.
Передаточная функция является дробно рациональной функцией относительно оператора преобразования Лапласа:
. (2.19)
Рис. 2.2. Расположение нулей и полюсов передаточной функции САУ на комплексной плоскости |
Корни полинома числителя передаточной функции (2.19) называют нулями, а корни полинома знаменателя – полюсами САУ. При анализе САУ нули и полюсы (особенности передаточной функции) удобно изображать точками на плоскости комплексного переменного (рис. 2.2). Так как коэффициенты передаточной функции – действительные числа, то нули и полюсы могут быть только вещественными ( ) либо комплексно-сопряженными ( и ) величинами. Если передаточная функция звена или системы не содержит особенностей в правой части плоскости , то систему называют минимально-фазовой, в противном случае ее считают неминимально-фазовой.
Рис.2.3 RC-цепочка |
Согласно второму уравнению Кирхгофа, дифференциалье уравнение, описывающие рассматриваемую - цепочку, имеет следующий вид:
На основании (2.8) и (2.9) в результате выполнения преобразование Лапласа над обеими частями этого уравнения получим следующее операторное уравнение, связывающее изображения входного и выходного сигналов объекта:
.
Используя определение передаточной функции (2.17), получаем:
,
где – коэффициент усиления, а – постоянная времени объекта, с. Полученная передаточная функция соответствует одному из так называемых типовых звеньев – апериодическому звену первого порядка. Нулей такая передаточная функция не имеет, а для расчета ее полюсов необходимо, записать характеристическое уравнение системы, приравняв к нулю полином знаменателя:
.
Это алгебраическое уравнение первого порядка имеет единственный действительный корень – полюс передаточной функции:
.
2.3. Временные и частотные характеристики
звеньев и систем
Динамические свойства линейных звеньев и систем автоматического управления в целом могут быть описаны дифференциальными уравнениями и передаточными функциями, а также с помощью временныхи частотных характеристик. Временная характеристика представляет собой функцию времени, описывающую выходной сигнал звена (или системы) при подаче на вход звена определенного тестирующего сигнала. Частотные характеристики описывают установившиеся вынужденные колебания на выходе звена, вызванные гармоническим воздействием на входе.
Рис. 2.4. Единичное ступенчатое воздействие |
К числу основных временных характеристик звена или системы относятся переходная функцияи функция веса.
Переходная функция звена представляет собой сигнал на выходе звена (реакцию звена), вызванный подачей на его вход единичного ступенчатого воздействия. Единичное ступенчатое воздействие(единичная ступенчатая функция, функция Хевисайда) – это воздействие, которое мгновенно возрастает от нуля до единицы и далее остается неизменным (рис. 2.4). Единичное ступенчатое воздействие обозначается и может быть описано следующим выражением:
(2.20)
Переходная функция обычно обозначается . Следовательно, – это выражение для при = .
Наряду с переходной функцией при описании звеньев и систем применяется функция веса, общепринятое обозначение которой . Эта временная характеристика представляет собой реакцию звена на дельта-функцию (единичную импульсную функцию, иглу Дирака). Дельта-функция, которая обозначается , – это математическая идеализация предельно короткого импульсного сигнала бесконечно большой амплитуды. Математически дельта-функцию можно описать следующим образом:
(2.21)
При этом согласно определению дельта-функции
.(2.22)
Таким образом, - это при = .
Поскольку дельта-функция равна производной по времени от единичного ступенчатого воздействия, то и между переходной функцией, и функцией веса линейных звеньев существует аналогичная связь:
. (2.23)
И наоборот
.
Зная переходную и функцию веса, можно определить реакцию звена на произвольное входное воздействие при нулевых начальных условиях с помощью следующих формул:
; (2.24)
, (2.25)
где , – значения и при t = 0;
Выражения (2.24) и (2.25) легко получаются друг из друга, являясь вариантами интеграла Дюамеляили интеграла свертки. У реальных инерционных звеньев и систем h(0)=0, так как реакция на их выходе всегда отстает от входного воздействия. Поэтому в дальнейшем выражения (2.24) и (2.25) приводятся без первого слагаемого.
Временные характеристики могут быть выражены непосредственно через передаточную функцию звена с помощью преобразований Лапласа.
Поскольку ,в случае, когда входное воздействие (t) представляет собой единичный импульс , и с учетом того, что его изображение по Лапласу , получим следующее выражение для изображения функции веса звена:
w(p) =W(p) или , т.е.
. (2.26)
Таким образом, функция веса определяется через передаточную функцию по формуле обратного преобразования Лапласа, т.е. является ее оригиналом.
В случае, когда (t) = 1(t), учитывая, что L = 1/p, получаем следующее выражение для изображения переходной характеристики:
Следовательно, переходная характеристика звена равна:
При рассмотрении частотных характеристик считаем, что на входе системы действует гармонический сигнал с амплитудой и частотой :
. (2.27)
По окончании переходного процесса на выходе линейной системы будут существовать гармонические колебания с той же частотой, что и у входного сигнала, но в общем случае отличающиеся от него по амплитуде и фазе, т.е. в установившемся режиме выходная величина звена равна:
, (2.28)
где – амплитуда установившихся выходных колебаний; – фазовый сдвиг между входными и выходными синусоидальными колебаниями.
При изменении частоты изменяется, как соотношение между амплитудами входных и выходных колебаний, так и фазовый сдвиг между ними. При этом зависимость от частоты отношения амплитуд называется амплитудно-частотной характеристикой(АЧХ), т.е.
.
Зависимость величины фазового сдвига от частоты называется фазо-частотной характеристикой (ФЧХ).
Определив амплитудно- и фазо-частотную характеристики системы, например, получив их экспериментально, можно построить еще одну частотную характеристику – амплитудно-фазовую(АФЧХ).
Амплитудно-фазовую характеристику, используя в качестве полярных координат, строят на комплексной плоскости по следующим правилам. Задаются значением частоты ωi, для которого по графику ФЧХ определяют величину фазового сдвига φ(ωi) , а по графику АЧХ – величину A(ωi).
Рис. 2.5. Примерный вид частотных характеристик инерционной САУ: а - амплитудно-частотной; б - фазо-частотной; в - амплитудно-фазовой |
а) |
б) |
в) |
Из начала координат комплексной плоскости проводится луч под углом φ(ωi) к положительной действительной полуоси. Угол откладывается против часовой стрелки, если φ(ωi) > 0, т.е. когда выходной гармонический сигнал опережает входной, и в противоположном направлении, если φ(ωi) < 0 .Из начала координат по этому лучу откладывается отрезок, длина которого в выбранном масштабе равна A(ωi) (рис. 2.5, в).
Каждая точка амплитудно-фазовой частотной характеристики соответствует определенному значению частоты. Значения для конечного количества точек характеристики наносятся вдоль характеристики и указывают направление возрастания частоты ω.
Очевидно, что возможно и решение обратной задачи:по годографу амплитудно-фазовую частотную характеристику можно построить характеристики и . На рис. 2.5 приведен примерный вид этих характеристик для инерционной системы.
Как показано на этих рисунках, у таких звеньев в силу их инерционности амплитудная частотная характеристика по мере увеличения частоты в конце концов спадает до нуля. При этом, чем менее инерционно звено, тем шире его амплитудная частотная характеристика, т.е. тем больше полоса пропускаемых звеном частот, или просто его полоса пропускания.
Теоретически частотная характеристика продолжается до бесконечности, но практически полоса пропускания оценивается значением частоты, при котором отношение амплитуд окончательно становится меньше определенного, достаточно малого конечного значения. Это значение обычно берут равным 0,05 (на этой частоте амплитуда выходных колебаний падает до 5 % амплитуды входных колебаний). Наличие максимума у амплитудной частотной характеристики говорит о резонансных свойствах звена. Частота, соответствующая максимуму амплитудной характеристики, называется резонансной( ).
Фазовая характеристика у обычных инерционных звеньев (рис. 2.5, б) отрицательна ( (ω)< 0), т.е. выходные колебания отстают по фазе от входных, и это отставание растет с частотой.
Используя символическую форму записи гармонических сигналов xвх(t) и xвых(t), получим аналитические выражения для рассмотренных характеристик, их зависимость между собой и с передаточной функцией системы.
Символическая запись сигналов (2.27) и (2.28):
, .
Определим амплитудно-фазовую характеристику системы, как отношение выходного сигнала системы к входному, выраженное в комплексной форме:
. (2.29)
Из выражения (2.29) следует, что амплитудно-частотная и фазо-частотная характеристики является соответственно модулем и фазой (аргументом) амплидудно-фазовой характеристики:
A(ω) = |W(jω)| и φ(ω) = argW(jω).(2.30)
Очевидно, что на приведенных зависимостях между характеристиками основывалась рассмотренная методика построении W(jω) по A(ω) и φ(ω).
Комплексное выражение для W(jω) может быть представлено, как в форме (2.29), так и в виде:
W(jω) = P(ω) + jQ(ω), (2.31)
где P(ω), Q(ω) – соответственно вещественная и мнимая частотные характеристики системы.
Таким образом, получаем всего пять частотных характеристик: амплитудно-фазовую W(jω), амплитудно-частотную A(ω), фазо-частотную φ(ω), вещественную частотную P(ω) и мнимую частотную Q(ω). Между этими характеристиками, кроме зависимостей (2.30) – (2.31), имеются следующие очевидные связи:
; (2.32)
(2.33)
. (2.34)
Частотные характеристики системы не зависят от времени. В этом их принципиальное отличие от временных характеристик. Если временные характеристики определяют поведение системы в переходном процессе при различных типовых входных воздействиях, то частотные выражают зависимость параметров установившихся выходных синусоидальных колебаний от тех же параметров входных колебаний при различных частотах.
Частотные характеристики широко используются в инженерной практике при анализе и синтезе САУ. Особым их достоинством является то, что они могут быть получены экспериментальным путем, что особенно важно для систем, аналитические уравнения которых не представляется возможным получить из-за их сложности или малоизученности технологического процесса.
Несмотря на то, что частотные характеристики, например W(jω), отображают только установившиеся процессы в системе, они в полной мере определяет и ее динамические свойства.
Подставляя производные сигналов (t) и равные
….
…. ,
в дифференциальное уравнение (2.5), получим:
[ ] =
= [ ] .
Из полученного выражения определяем АФХ системы:
. (2.35)
Сравнивая выражения (2.18) и (2.35) делаем заключение, что выражения для АФЧХ W(jω) системы может быть получено по ее передаточной функции W(p), в которой достаточно переменную p заменить на jω:
W( jω) = . (2.36)
Если в выражении (2.18) осуществить аналогичную замену p на jω, получим:
, (2.37)
где и – изображения Фурье входного и выходного сигналов.
На основании выражения (2.37) амплитудно-фазовую частотную характеристику можно определить как отношение изображений Фурье выходного и входного сигналов системы при нулевых начальных условиях:
.
Выражению (2.26), связывающему с помощью преобразования Лапласа передаточную функцию системы с ее временной характеристикой – функцией веса , соответствуют следующие зависимости для амплитудно-фазовой частотной характеристики:
(2.38)
и
(2.39)
Первое выражение определяет амплитудно-фазовую частотную характеристику системы по его весовой функции, а второе, наоборот, – весовую функцию по . По частотным характеристикам САУ можно непосредственно определить ее реакцию не только на импульсное воздействие, но и на входное воздействие любого вида.
Преобразуя выражение (2.35), в котором приняты следующие обозначения:
A(jω)= ;
B(jω) =
получим:
, (2.40)
где индексами и отмечены действительные (U)и мнимые (V) части соответствующих комплексных величин в числителе и знаменателе.
Преобразуя (2.40), окончательно имеем:
,
где:
Для инженерных расчетов особенно широко используются частотные характеристики, построенные в логарифмическом масштабе, в том числе логарифмическая амплитудно-частотная L(ω), связанная с АЧХ системы зависимостью:
L(ω) = 20lg A(ω). (2.41)
Смысл приведенного выражения заключается в следующем. Определим усиление системой мощности сигнала, в виде отношения мощности на выходе Рвых к мощности на входе Рвх. Этот показатель, для удобства оцениваемый в логарифмическом масштабе, с учетом того, что мощность сигнала пропорциональна квадрату его амплитуды, записывается в виде:
.
В качестве единицы усиления или ослабления мощности сигнала при прохождении его через какое-либо устройство принят Бел (по имени американского
Рис. 2.6. Логарифмическая амплитудно-частотная L(ω) и фазо-частотная характеристики в совмещенной системе координат |
изобретателя А. Белла). Но поскольку 1 Бел является слишком крупной единицей (ей соответствует изменение мощности в десять раз), в теории автоматического регулирования за единицу измерения принят децибел 1 дБ = 0,1 Б.
С учетом этого можно записать:
,
где величина L(ω ) выражена в децибелах.
Используемая совместно с L(ω ) фазо-частотная характеристика строится в полулогарифмическом масштабе: по оси ординат откладывается значение фазы в градусах или радианах, а по оси абсцисс – . При этом единицей измерения частоты является декада. Декадойназывается частотный интервал, граничные значения которого соотносятся в десять раз. В логарифмическом масштабе частот отрезок в одну декаду не зависит от частоты и имеет длину, равную единице.
При решении практических задач на оси абсцисс указываются не значения lgω, а, что более удобно, значения самой частоты ω. Очевидно, что при использовании логарифмического масштаба точка на оси абсцисс, соответствующая ω = 0, находится слева в бесконечности, т.е. логарифмические характеристики строятся не от нулевой частоты, а от некоторого значения, которое определяется данными конкретной задачи. На рис. 2.6 приведен примерный вид логарифмической амплитудно-частотной характеристики L(ω) и фазо-частотной характеристик , построенных в совмещенной системе координат.
В дальнейшем для краткости будем в названии различных частотных характеристик опускать слово «частотная», говоря просто о логарифмической амплитудной характеристике L(ω) (ЛАХ), амплитудно-фазовой характеристике W(jω) (АФХ) и т.п.
Дата добавления: 2017-09-01; просмотров: 2987;