Поверхности II порядка. Канонические уравнения
Название поверхности | Каноническое уравнение | ||
эллипсоид | (рис.1) | ||
гиперболоиды | однополостный гиперболоид | (рис.2) | |
двуполостный гиперболоид | (рис.4) | ||
конус | (рис.5) | ||
пароболоиды | эллиптический параболоид | (рис.3) | |
гиперболический параболоид | (рис.6) | ||
цилиндры | эллиптический цилиндр | ||
гиперболический цилиндр | |||
параболический цилиндр | |||
пара плоскостей | левая часть уравнения распадается на произведение двух линейных множителей |
Рисунок 6.2.2
Рисунок 6.2.1.
Рисунок 6.2.3.
Рисунок 6.2.4.
|
Рисунок 6.2.6.
Рисунок 6.2.5.
Введение в математический анализ
Пределы функций
При вычислении предела элементарной функции f(x) приходится сталкиваться с двумя существенно различными типами примеров.
1 Функция f(x) определена в предельной точке x=a. Тогда
. (6.3.1)
2 Функция f(x) в предельной точке х=а не определена или же вычисляется предел функции при . Тогда вычисление предела требует в каждом случае индивидуального подхода. В одних случаях (наиболее простых) вопрос сводится непосредственно к применению теорем о свойствах бесконечно больших и бесконечно малых функций и связи между ними. Более сложными случаями нахождения предела являются такие, когда функция f(x) в точке х=а или при представляет собой неопределенность
.
Приведем основные теоремы, на которых основано вычисление пределов.
1 Если существуют и , то
а) ;
б) ;
Частные случаи:
в) .
2 Если в некоторой окрестности точки х=а (кроме, быть может, точки а) выполнено условие f(x)=q(x) и если предел одной из этих функций в точке а существует, то
.
3 Если существует U(х) и f(х) – элементарная функция, то
.
Например : ,
.
4 Первый замечательный предел: . (6.3.2)
5 Второй замечательный предел: . (6.3.3)
Также при вычислении пределов следует знать ряд эквивалентных бесконечно малых функций:
при
Примеры 6.3.1.
Вычислите пределы:
1) .
Функция f(x) в предельной точке х=2 не определена; так как числитель и знаменатель дроби обращается в нуль, то имеем неопределенность вида 0/0.
Преобразуем дробь, и по формуле (1) получим
.
2) .
В этом случае также получается неопределенность вида 0/0. Преобразование функции сводится к уничтожению иррациональности в числителе: для этого умножим числитель и знаменатель на выражение и затем сократим дробь на . Отсюда
.
3) .
Здесь имеет место неопределенность вида . Разделим числитель и знаменатель на (наивысшую степень х в данной дроби). Тогда
.
4) .
Здесь получается неопределенность вида . Представим функцию в виде дроби, которая в точке х=0 дает неопределенность вида 0/0, после чего преобразуем её так, чтобы можно было воспользоваться первым замечательным пределом:
5)
Функция при x-> представляет собой степень, основание которой стремится к единице, а показатель – к бесконечности, неопределенность вида .
Преобразуем функцию таким образом, чтобы использовать второй замечательный предел:
= = = = = =
= = =
6) .
Используя второй замечательный предел, находим
= = =
Дата добавления: 2016-06-05; просмотров: 1356;