Критерий Колмогорова
Пусть имеется выборка значений случайной величины x, по которой строится эмпирическая функция распределения . Предположим, что случайная величина x задается функцией распределения .
Теорема.Если функция непрерывна, то
где , то есть, величина определяет наибольшую меру отклонения эмпирической функции распределения от теоретической .
Замечание. Из теоремы следует, что критерий Колмогорова применим для оценки только непрерывных и полностью определенных, включая параметры, распределений и при достаточно большом объеме статистических данных.
Пусть задана некоторая выборка, по которой на плоскости строится ломаная линия. В этой же системе координат строим график теоретической функции распределения.
Определяем и полагаем . Находим , где - вероятность того, что за счет случайных причин максимальный разброс и будет меньше, чем фактически наблюдаемый. Если - мала (<0,2), то не соответствует опытным данным, если - велика (>0,2), то совместима с данными выборки.
Критерий c2
Пусть задан интервальный статистический ряд распределения случайной величины x. По нему найдем теоретические вероятности , соответствующие столбцу r, . Предположим, что случайная величина x задается функцией распределения . За меру отклонения между распределением выборки и теоретическим распределением принимается сумма квадратов разности между теоретическими и опытными вероятностями:
,
где - некоторые коэффициенты.
Если положить , то закон распределения d не зависит от вида , числа опытов n и асимптотически сходится к распределению c2,
или .
Распределение c2 имеет число степеней свободы, где k – число интервалов, на которые разбито множество наблюдений, r – число параметров теоретического распределения вероятностей.
По выборке вычисляется величина , которая сравнивается с . Если , то считается, что гипотеза не согласуется с наблюдаемыми значениями случайной величины, если , то гипотеза не противоречит опытным данным.
Замечание. Если критерий Колмогорова требует для своего применения жестких условий, то критерий c2 (Пирсона) либерален. Во-первых, он применяется при проверке гипотез как дискретных, так и непрерывных случайных величин, и, во-вторых, значения параметров могут быть вычислены из этих же статистических данных. Принято считать, что для применения критерия достаточно, чтобы .
Лекция №15
Дата добавления: 2016-07-27; просмотров: 1926;