Законы внешнего фотоэффекта
Наряду с тепловым излучением, явлением которое не укладывается в рамки классической физики, является фотоэффект.
Внешним фотоэффектом называется явление испускания электронов веществом при облучении электромагнитными волнами.
Фотоэффект был открыт Герцем в 1887 году. Он заметил, что искра между цинковыми шариками облегчается, если облучить межискровой промежуток светом. Экспериментально закон внешнего фотоэффектом изучил Столетов в 1888 году. Схема для исследования фотоэффекта приведена на рис.1.
Рис.1. |
Катод и анод располагается в вакуумной трубке, так как ничтожные загрязнения поверхности металла влияют на эмиссию электронов. Катод освещается монохроматическим светом через кварцевое окно (кварц, в отличие от обычного стекла, пропускает ультрафиолетовый свет). Напряжение между анодом и катодом регулируется потенциометром и измеряется вольтметром . Две аккумуляторные батареи и , включенные навстречу друг другу, позволяют с помощью потенциометра изменять значение и знак напряжения. Сила фототока измеряется гальванометром .
На рис.2. изображены кривые зависимости силы фототока от напряжения, соответствующие различным освещенностям катода и ( ). Частота света в обоих случаях одинакова.
Рис.2. |
Существование фототока в области отрицательных напряжений объясняется обладанием фотоэлектронами кинетической энергии. За счет уменьшение этой энергией электроны совершают работу против сил задерживающего электрического поля и достигают анода.
Максимальная начальная скорость фотоэлектронов связана с задерживающим напряжением, следующим соотношением:
, | (1) |
где и - заряд и масса электрона.
По мере увеличения напряжения фототок возрастает, так как все большее число фотоэлектронов достигает анода. Максимальное значение фототока, называется фототоком насыщения. Он соответствует таким значениям напряжения, при которых все электроны, выбитые из катода, достигают анода: , где - число фотоэлектронов, вылетающих из катода за 1 секунду.
Столетов опытным путем установил следующие законы фотоэффекта:
- Число электронов, вырываемых из катода за единицу времени, пропорционально интенсивности света. (Фототок насыщения пропорционален энергетической освещенности ).
- Максимальная начальная скорость фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой.
- Для каждого фотокатода существует красная граница фотоэффекта, то есть минимальная частота , при которой фотоэффект еще возможен. Эта частота зависит от химической природы и состояния его поверхности.
При объяснении второго и третьего законов возникли серьезные трудности. Согласно электромагнитной теории, вырывание свободных электронов из металла должно явиться результатом их «раскачивания» в электрическом поле волны. Тогда не понятно, почему максимальная скорость вылетающих электронов зависит от частоты света, а не от амплитуды колебаний вектора напряженности электрического поля и связанной с ней интенсивностью волны. Трудности в истолковании второго и третьего законов фотоэффекта вызвали сомнения в универсальной применимости волновой теории света.
Уравнение Эйнштейна для фотоэффекта
В 1905 году Эйнштейн объяснил законы фотоэффекта с помощью предложенной им квантовой теории. Свет частотой не только излучается, как это предполагал Планк, но и поглощается веществом определенными порциями (квантами). Свет это поток дискретных световых квантов (фотонов), движущихся со скоростью света. Энергия кванта равна . Каждый квант поглощается только одним электроном. Поэтому число вырванных электронов должно быть пропорционально интенсивности света (1 закон фотоэффекта).
Энергия падающего фотона расходуется на совершение электроном работы выхода из металла и на сообщение вылетевшему фотоэлектрону кинетической энергии:
(2) |
Уравнение (2) называется уравнением Эйнштейна для внешнего фотоэффекта. Уравнение Эйнштейна позволяет объяснить второй и третий законы фотоэффекта. Из уравнения (2) непосредственно следует, что максимальная кинетическая энергия возрастает с увеличением частоты падающего света. С уменьшением частоты кинетическая энергия уменьшается и при некоторой частоте она становиться равной нулю и фотоэффект прекращается ( ). Отсюда
, | (3) |
- красная граница фотоэффекта, она зависит лишь от работы выхода электрона из металла (то есть от химической природы вещества).
Рассмотренный выше фотоэффект – однофотонный. С развитием лазерной техники был получен многофотонный фотоэффект.
При облучении катода мощным лазерным пучком, электрон поглощает несколько фотонов:
, | (4) |
где - число поглощенных фотонов.
При этом красная граница фотоэффекта сдвигается в сторону меньших частот:
. | (5) |
Кроме внешнего фотоэффекта известен еще и внутренний фотоэффект. При облучении твердых и жидких полупроводников и диэлектриков электроны из связанного состояния переходят в свободное, но при этом не вылетают наружу. Наличие свободных электронов приводит к возникновению фотопроводимости. Фотопроводимость это увеличение электропроводности вещества под действием света.
Фотон и его свойства
Явления интерференции, дифракции, поляризации можно объяснить только волновыми свойствами света. Однако фотоэффект и тепловое излучение – только корпускулярными (считая свет потоком фотонов). Волновое и квантовое описание свойств света дополняют друг друга. Свет одновременно волна и частица. Основные уравнения, устанавливающие связь между волновыми и корпускулярными свойствами следующие:
или | (6) |
и
(7) |
и - величины характеризующие частицу, и - волну.
Массу фотона найдем из соотношения (6): .
Фотон – это частица, которая всегда движется со скоростью света и имеет массу покоя равную нулю. Импульс фотона равен: .
Эффект Комптона
Наиболее полно корпускулярные свойства проявляются в эффекте Комптона. В 1923 году американский физик Комптон исследовал рассеяние рентгеновских лучей на парафине, атомы которого легкие.
Рассеяние рентгеновских лучей с волновой точки зрения связано вынужденными колебаниями электронов вещества, так что частота рассеянного света должна совпадать с частотой падающего света. Однако в рассеянном свете обнаружилась большая длина волны . не зависит от длины волны рассеиваемых рентгеновских лучей и от материала рассеивающего вещества, но зависит от направления рассеивания. Пусть - угол между направлением первичного пучка и направлением рассеянного света, тогда , где ( м).
Этот закон верен для легких атомов ( , , , ) имеющих электроны, слабо связанные с ядром. Процесс рассеяния можно объяснить упругим столкновением фотонов с электронами. Под действием рентгеновских лучей электроны легко отделяются от атома. Поэтому можно рассматривать рассеяние свободными электронами. Фотон, имеющий импульс , сталкивается с покоящимся электроном и отдает ему часть энергии, а сам приобретает импульс (рис.3).
Рис.3. |
Используя законы сохранения энергии и импульса для абсолютно упругого удара, получим для выражение: , которое совпадает с экспериментальным, при этом , что и доказывает корпускулярную теорию света.
Люминесценция, фотолюминесценция и ее основные закономерности
Люминесценция – это неравновесное излучение, избыточное при данной температуре над тепловым излучением. Люминесценция возникает под действием внешних воздействий, не обусловленных нагреванием тела. Это холодное свечение. В зависимости от способа возбуждения различают: фотолюминесценцию (под действием света), хемилюминесценцию (под действием химических реакций), катодолюминесценцию (под действием быстрых электронов) и электролюминесценцию (под действием электрического поля).
Люминесценция прекращающаяся сразу ( с) после исчезновения внешнего воздействия, называется флуоресценцией. Если люминесценция исчезает через с после окончания воздействия, то она называется фосфоресценцией.
Вещества, которые люминесцируют, называются люминофорами. К ним относятся соединения урана, редких земель, а также сопряженные системы, у которых чередуются связи , ароматические соединения: флуоресциин, бензол, нафталин, антрацен.
Фотолюминесценция подчиняется закону Стокса: частота возбуждающего света больше испускаемой частоты , где - часть поглощенной энергии, переходящей в тепловую.
Основной характеристикой люминесценции является квантовый выход равный отношению числа поглощенных квантов к числу излученных. Есть вещества, у которых квантовый выход близок к 1 (например, флуоресциин). У антрацена квантовый выход равен 0,27.
Явление люминесценции получило широкое применение на практике. Например, люминесцентный анализ – метод определения состава вещества по характерному его свечению. Метод очень чувствительный (примерно ), позволяет обнаруживать ничтожное количество примесей и применяется для точнейших исследований в области химии, биологии, медицины и пищевой промышленности.
Люминесцентная дефектоскопия позволяет обнаружить тончайшие трещины на поверхности деталей машин (исследуемая поверхность покрывается для этого люминесцентным раствором, который после удаления остается в трещинах).
Люминофоры используются в люминесцентных лампах, являются активной средой оптических квантовых генераторов, применяются в электронно-оптических преобразователях. Используются для изготовления светящихся указателей различных приборов.
Физические принципы устройства приборов ночного видения
Основу прибора составляет электронно-оптический преобразователь (ЭОП), который преобразует невидимое глазом изображение объекта в ИК лучах в видимое изображение (рис.4).
Рис.4. |
1 – фотокатод, 2 – электронная линза, 3 – люминесцирующий экран,
Инфракрасное излучение от объекта вызывает фотоэлектронную эмиссию с поверхности фотокатода, причем величина эмиссии с различных участков последнего изменяется в соответствии с распределением яркости спроецированного на него изображения. Фотоэлектроны ускоряются электрическим полем на участке между фотокатодом и экраном, фокусируются электронной линзой и бомбардируют экран, вызывая его люминесценцию. Интенсивность свечения отдельных точек экрана зависит от плотности потока фотоэлектронов, вследствие чего на экране возникает видимое изображение объекта.
<== предыдущая лекция | | | следующая лекция ==> |
Интерференция света | | | ОСНОВНЫЕ ТРЕБОВАНИЯ К МАТЕРИАЛАМ И КОНСТРУКЦИЯМ ТЕПЛООБМЕННЫХ И ВЫПАРНЫХ АППАРАТОВ |
Дата добавления: 2016-05-28; просмотров: 6726;