Теорема Паскаля и ее предельные случаи
Определение: Шестивершинником называется совокупность шести различных упорядоченных точек А1, А2 , А3 , А4 , А5 , А6 , среди которых никакие три не лежат на одной прямой, и прямых (А1А2), (А2А3), (А3А4), (А4А5), (А5 А6), (А6А1). Точки называются вершинами, прямые называются сторонами.
Определение: Пары прямых:(А1А2) и (А4А5), (А2А3) и (А5 А6), (А3А4) и (А6А1) - называются противоположными сторонами.
Определение: Шестивершинник называется вписанным в овальную квадрику (или паскалевым), если его вершины принадлежат квадрике. Иногда говорят – шестивершинник, инцидентный квадрике.
Теорема Паскаля. Для того чтобы шестивершинник был инцидентен квадрике необходимо и достаточно, чтобы противоположные стороны шестивершинника пересекались в трех точках инцидентных одной прямой.
Замечание: Другая формулировка теоремы: для того чтобы шестивершинник был паскалевым необходимо и достаточно, чтобы противоположные стороны пересекались в коллинеарных точках.
А1 , А2 , А3 , А4 , А5 , А6 КВП P, Q, R – коллинеарны, где (А1А2)∩(А4А5)=P
(А2А3)∩(А5А6)=Q
(А3А4)∩(А6А1)=R
Доказательство. Пусть даны шесть точек А1 , А2 , А3 , А4 , А5 , А6 инцидентных квадрике, среди которых никакие три не коллинеарны.
Обозначим: (А1А2)∩(А4А5)=P,
(А2А3)∩(А5А6)=Q,
(А3А4)∩(А6А1)=R.
Через пять точек всегда проходит единственная квадрика.
Докажем, что принадлежность точки А6 квадрике коллинеарности точек P, Q, R.
Рассмотрим репер R(А1, А2, А3, А4), пусть в этом репере точки А5 и А6 . Тогда уравнение квадрики: с3∙(с2 - с1)∙х1∙х2 + с2∙(с1 - с3)∙х1∙х3 + с1∙(с3 - с2)∙х2∙х3=0 .
Точка А6 КВП с3∙(с2 - с1)∙d 1 ∙d 2 +с2∙(с1 - с3)∙d 1 ∙d 3 +с1∙(с3 - с2)∙d 2 ∙d 3 =0.
Найдем координаты точек P, Q, R в репере R(А1, А2, А3, А4).
Так как точки А1, А2, А3 - базисные, то уравнения координатных
прямых будут: (А1А2) - х3=0, (А1А3) - х2=0, (А2А3) - х1=0.
Уравнения прямых:
(А3А4) → =0 - х1 + х2 = 0,
(А4А5) → =0 (с2–с3)∙х1+(с3–с1)∙х2+(с1- с2)∙х3=0,
(А5А6) → =0
(с2∙d3 – с3∙d2)∙х1 + (с3∙d1 – с1∙d3)∙х2 + (с1∙d2 - с2∙d1)∙х3 = 0,
(А6А1) → =0 - d3∙х2 + d2∙х3 = 0,
Р=(А1А2) ∩ (А4А5) →
Q=(А2А3) ∩ (А5А6) →
R=(А3А4) ∩ (А6А1) → .
Тогда координаты точек P , Q , R .
Запишем условие коллинеарности точек: =0
d2∙(с2-с3)∙(с3 d1-с1 d3)-d2∙(с1-с3)∙(с3 d1-с1 d3)+d3∙(с1-с3)∙(с2 d1-с1 d2)=
=d2∙(с3 d1 - с1 d3)∙(с2 - с3 - с1 + с3) + d3∙(с1 - с3)∙(с2 d1 - с1 d2) = d2∙(с3 d1-с1 d3)∙(с2- с1)+d3∙(с1-с3)∙(с2 d1 -с1 d2)=
d2∙с3 d1∙с2 - d2∙с1 d3∙с2 – d2∙с3 d1∙с1 + d2∙с1 d3∙с1+ d3∙с1∙с2 d1 – d3∙с3∙с2 d1 - d3∙с1∙с1d2 + d3∙с3∙с1 d2 =
= d2∙d1∙(с3∙с2 - с3∙с1) - d2∙d3∙(с1∙с2 - с3∙с1) + d3∙d1 ∙(с1∙с2 - с3∙с2) =
= d2∙d1∙с3∙(с2 -с1) + d2∙d3∙с1∙(-с2+с3)+d3∙d1∙с2∙(с1 - с3) =0 .
Т.о. условие коллинеарности точек P,Q,R условию А6 КВП. □
Замечание: Частным случаем теоремы Паскаля является теорема Паппа.
Дата добавления: 2022-02-05; просмотров: 302;