ИЗОБРАЖЕНИЕ ПО ЛАПЛАСУ


Изображением по Лапласу функции-оригинала называется комплекснозначная функция комплексного аргумента , определяемая соотношением .

Соответствие между оригиналом и изображением символически записывается так:

Или обратное:

Здесь L - оператор прямого преобразования Лапласа,

L-1- оператор обратного преобразования Лапласа.

Итак, преобразование Лапласа является оператором, который каждой функции ставит в соответствие функцию .

Заметим, что метод Хевисайда, как это стало ясно после работ Карсона, заключается в переходе от функции к функции .

Таким образом, изображение по Хевисайду отличается от изображения по Лапласу множителем .

Наличие дополнительного множителя приближает метод Хевисайда к другому символическому методу, применяемому в электротехнике (методу Карсона), однако, оно вносит неоправданные усложнения в некоторые выкладки. Кроме того, преобразование Лапласа более естественно связывается с известным преобразованием Фурье, которое широко применяется в математической физике. Исходя из этих соображений, будем рассматривать преобразование Лапласа, а не преобразование Хевисайда.

Имеет место следующая теорема о существовании изображения по Лапласу.

Теорема:

Пусть функция является оригиналом, тогда интеграл Лапласа сходится абсолютно для всех значений комплексной переменной , удовлетворяющих условию: и определяет изображение , которое является аналитической функцией в полуплоскости .

Для доказательства оценим модуль интеграла Лапласа:

, если .

 

Итак: , что и говорит о абсолютной сходимости интеграла Лапласа.

Чтобы доказать аналитичность найдем производную:

 

.

 

Аналогично предыдущему можно показать: полученный интеграл сходится, значит, существует, и функция аналитична в полуплоскости (рис.2.1).

Следствие:

Так как , то , а если аналитична в бесконечно удаленной точке, то , т.е. имеет нуль в бесконечно удаленной точке.

Замечания.

1. обычно имеет изолированные особые точки и поэтому определена не только в полуплоскости , а всюду при , (Рис.3). Однако при .

 

2. Преобразование Лапласа относится к семейству интегральных преобразований типа:

 

, где - ядро преобразования.

Если

имеем преобразование Лапласа,

преобразование Меллина,

преобразование Ханкеля,

преобразование Фурье ,

,- синус и косинус преобразования Фурье .



Дата добавления: 2021-11-16; просмотров: 296;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.