Физические свойства товаров
К общим физическим относятся размерно-массовые и теплофизические характеристики (свойства) единичных экземпляров и совокупных товарных масс (упаковочных единиц и товарных партий). [20]
Размерно-массовые характеристики отдельных товаров и товарных партий. Эти характеристики представлены массой, длиной, площадью, объемом.
Масса товаров — количество товаров в определенном объеме, выраженное в основной (кг) или производных величинах (мг, г, ц, т и др.).
Единичные экземпляры товаров и товарные партии характеризуются абсолютной массой, которая индивидуальна для каждого из них и иногда используется для их идентификации.
Единицы измерения абсолютной массы довольно часто используются для указания стоимостной характеристики товара (цена за 1 кг) и указываются на этикетках, вкладышах и ценниках.
Приемка, отпуск и реализация товаров по количеству также осуществляются чаще всего по абсолютной массе.
Абсолютная масса служит одновременно показателем качества, который регламентируется стандартами и техническими условиями для многих видов потребительских товаров, особенно для пищевых продуктов. Например, масса орехов, кочанных капустных овощей, сыра, колбасных, кондитерских изделий, краски, стирального порошка.
Масса используется и для характеристики таких непродовольственных товаров, как бумага, обои, строительные материалы.
Иногда масса выражается в опосредованных единицах — количество штук в 1 кг или в 100 г. В этом случае устанавливается средняя масса единичного экземпляра товара. Обычно этот показатель применяется для мелких товаров, для поштучного измерения которых требуются более точные весы и большие затраты на измерения.
Средняя и абсолютная масса единичных экземпляров применяется как классификационный признак для характеристики некоторых товаров.
Длина — основная физическая величина, выражаемая в метрах (м). Применяется как показатель качества отдельных товаров товарного артикула (длина огурцов, овощной зелени, бананов и т. п.), а также как основная единица измерений при приемосдаточном контроле по количеству тканей, стройматериалов из древесины, мебели, некоторых резинотехнических изделий, электропроводов, перевязочных материалов и т. п. Измерение товарных масс (упаковок, партий) также может производиться по длине, особенно если измерение по массе невозможно или требует больших трудозатрат.
Стоимостная характеристика единицы длины — это цена товаров, которые при отпуске измеряются по длине. При этом в практике торговли часто применяется такая единица измерения величины, как погонный метр — условная единица длины, не зависящая от ширины изделия.
Многие товары с круглым или овальным сечением измеряют по диаметру, например для большинства видов свежих плодов и овощей в стандарте установлен размер по наибольшему поперечному диаметру; диаметром характеризуются посуда, тара с круглым дном.
Производными величинами длины являются площадь и объем.
Площадь — производная физическая величина, определяемая как произведение двух длин (длины и ширины). Эта величина чаще всего применяется для характеристики оборудования (занимаемая площадь), тары (площадь дна) или складских помещений (полезная площадь).
Объем — производная физическая величина, определяемая как произведение трех длин (длины, ширины и высоты). Это самая распространенная физическая величина, применяемая для характеристики жидких товаров (упаковочных единиц или товарных партий). Одновременно она служит мерой при отпуске товара потребителю, идентифицирующим признаком единичных экземпляров товаров или совокупных упаковочных единиц (например, молоко в тетрапаках вместимостью 1; 0,5; 0,25 л; духи во флаконах вместимостью 16, 50, 100 мл).
Для некоторых непродовольственных товаров объем является важным показателем качества. Например, объем холодильной камеры холодильников, объем цилиндров двигателей автомашин.
Плотность — производная физическая величина (р), определяемая отношением массы товара (т) к его объему (V):
Плотность товаров зависит от их химического состава, структуры, а также температуры и давления. Разные вещества обладают разной плотностью. Чем больше в составе товара веществ с повышенной плотностью, тем выше и его плотность. Пористая или крупноклеточная структура товаров обусловливает пониженную плотность.
Плотность товаров влияет на массу и объемную массу, а также на объем товаров.
Теплофизические свойства товаров. К общим теплофизическим свойствам относятся температура, теплоемкость и теплопроводность.[20]
Температура — основная физическая величина, которая характеризует теплодинамическое состояние как единичных экземпляров товаров, так и их совокупностей — товарных партий.
Температура товара и товарной партии зависит от температуры окружающей среды. При перемещении товаров из одной среды в другую возникают перепады температуры, что может вызвать выпадение конденсата на таре и товарах, а также их увлажнение. Вследствие этого могут увеличиться масса товаров, произойти нежелательные качественные изменения (микробиологическая порча, коррозия металлов и т. п.).
Температура товаров и товарных партий существенно влияет на их сохраняемость. При высокой температуре увеличивается интенсивность биохимических, микробиологических и некоторых физических процессов (например, усушка), вследствие чего возрастают потери, ухудшается сохраняемость товаров, сокращаются сроки хранения. Низкие температуры, снижая интенсивность многих процессов, также могут вызывать негативные явления (замерзание, застуживание). Поэтому оптимальная температура товаров индивидуальна для каждой товарной группы или даже вида товара. Например, температура молока должна быть не выше 8 °С, но и не ниже 0 °С.
Особенно важен этот показатель для скоропортящихся пищевых продуктов. Для некоторых из них даже регламентируется в стандарте температура самого товара (например, для молока). В большинстве случаев устанавливается температура не товара, а температурный режим хранения, что не всегда одно и то же.
Теплоемкость — количество тепла, необходимое для повышения температуры объекта определенной массы в определенном интервале температур.
Показателем теплоемкости служит удельная теплоемкость, которая определяется количеством тепла, необходимым для повышения температуры 1 кг продукта на 1 °С.
Теплоемкость товаров зависит от их химического состава и температуры, а товарных партий — еще и от аэропространства внутри товарной партии. С увеличением влажности и температуры теплоемкость, как правило, увеличивается.
Этот показатель применяется для расчета потребностей в холодильном оборудовании или кондиционерах для обогрева.
Теплопроводность — количество тепла, которое проходит через массу объекта определенной толщины и площади в фиксированное время при разности температур на противоположных поверхностях в один градус.
Показателем этого свойства является удельная теплопроводность, или коэффициент теплопроводности, который характеризуется количеством тепла, проходящего через массу продукта толщиной 1 м на площади 1 м2 за 1 ч при разности температур на противоположных поверхностях в один градус.
Чем больше в товарной партии аэропространство и ниже влажность товаров, тем меньше теплопроводность. Следовательно, сухие товары с высокой скважистостью медленнее охлаждаются. Поэтому заданные режимы с пониженной температурой для сухих товаров устанавливаются дольше, чем для влажных или для товаров, не имеющих аэропространства, но обладающих непрерывной водной фазой. Так, маргарин или сливочное масло, расфасованные в коробки монолитом, охлаждаются быстрее, чем в пачках.
Коэффициент теплопроводности используется при оценке качества материалов для изготовления одежды и обуви, характеристике теплоизоляционных материалов. Материалы с низким коэффициентом теплопроводности (вата, мех, пенополиуретан, синтепон, перо, пух и т. п.) применяют в качестве утеплителей для зимней одежды, обуви.
Теплопроводность товарных партий зависит от теплопроводности единичных экземпляров, параметров штабеля, а также способа размещения товаров в штабеле или насыпи. Для повышения теплопроводности штабеля с ящиками применяют такие способы укладки, как шахматная, «пятериком» или «колодцем».
К специфическим физическим свойствамтоварных партий относятся объемная (насыпная) масса и скважистость. [20]
Объемная (насыпная) масса — масса единицы объема товаров, выражается чаще всего в кг на 1 м3. Этот показатель используется для характеристики товаров, объединенных в совокупные упаковочные единицы или товарные партии. Особенностью таких товарных масс является наличие пустот между отдельными экземплярами товаров (плоды, овощи, карамельные, кондитерские изделия и т. п.) или частицами сыпучих товаров (мука, крупа, сахарный песок, крахмал, стиральные порошки, цемент, мел и т. п.).
Показатель объемной (насыпной) массы применяют при определении потребности в таре, складских площадях и транспортных средствах для обеспечения товародвижения. Чем больше объемная масса товара, тем меньше затраты на тару, транспортирование и хранение. Разные товары имеют неодинаковую объемную массу.
Объемная масса зависит от плотности единичных экземпляров товаров, а также от наличия аэропространств (пустот) в товарной массе. Эти аэропространства обеспечивают естественный и активный воздухообмен, а также теплообмен. Если аэропространства в товарной массе недостаточно, это может привести к негативным последствиям: самосогреванию, «отпотеванию» вследствие выпадения конденсата водяных паров, комкованию.
Аэропространство товарной массы характеризуется специфическим показателем — скважистостью (Ск).
Специфические физические свойства единичных экземпляров товаров устанавливаются только для товаров, характеризующихся целостностью. Их можно подразделить на следующие группы: структурно-механические, теплофизические, электрические, оптические и акустические свойства.
Следует отметить, что эти группы физических свойств выполняют двойную функцию: они предназначены не только для количественных, но и для качественных характеристик товаров.
Структурно-механические свойства — особенности товаров, проявляющиеся при ударных, сжимающих, растягивающих и других воздействиях.
Данные свойства товаров имеют важное значение в ситуациях, когда возникают нагрузки на товар.
Следствием нагрузок может быть деформация товаров.
Деформация — способность объекта изменять размеры, форму и структуру под влиянием внешних воздействий, вызывающих смещение отдельных частиц по отношению друг к другу.
Деформация товаров зависит от величины и вида нагрузки, структуры и физико-химических свойств объекта.
Деформации могут быть обратимыми и необратимыми. При обратимой деформации первоначальные размеры, форма и структура тела восстанавливаются полностью после снятия нагрузки, а при необратимой — не восстанавливаются. Способность к обратимым деформациям характеризуется упругостью и эластичностью, разница между которыми заключается во времени, в течение которого восстанавливаются исходные параметры.
В зависимости от направления приложенной силы деформации подразделяются на деформации растяжения, сжатия, изгиба, сдвига, кручения.
Последствия этих деформаций зависят от общих и специфичных механических свойств товара.
Структурно-механические свойства называют также реологическими. Они характеризуют способность товаров сопротивляться приложенным внешним силам или изменяться под их воздействием. К ним относятся прочность, твердость, упругость, эластичность, пластичность, вязкость.
Прочность — способность твердого тела сопротивляться разрушению при приложении к нему внешней силы при растяжении и сжатии. Это одно из важнейших структурно-механических свойств. Прочность материала зависит от его структуры и пористости.
Твердость — местная краевая прочность тела, которая характеризуется сопротивлением проникновению в него другого тела. Твердость товара определяется по тому минимальному усилию, которое нужно приложить для проникновения рабочей части прибора в товар. Твердость товаров зависит от их природы, формы, структуры, размеров и расположения атомов, а также сил межмолекулярного сцепления. Твердость определяют при оценке степени зрелости свежих плодов и овощей, так как при созревании их ткани размягчаются.
По твердости сухарных и бараночных изделий судят о процессах черствения, в ходе которых происходят структурные изменения, вызывающие увеличение твердости.
Показатели твердости применяют при оценке качества металлических, фарфоровых, фаянсовых, каменных и деревянных изделий, определяя их функциональные (для инструментов) и/или санитарно-гигиенические свойства (посуда).
Упругость — способность объекта к мгновенно обратимым деформациям. Этим свойством характеризуются такие товары, как, например, резиновые надувные изделия (шины, игрушки и т. п.).
Эластичность — способность объекта к обратимым деформациям в течение определенного времени. Это свойство используется при оценке качества хлеба (состояние мякиша), мяса и рыбы, клейковины теста. Так, эластичность мякиша хлеба, мяса и рыбы служит показателем их свежести, так как при черствении мякиш утрачивает эластичность; при перезревании мяса и рыбы или их порче мышечная ткань сильно размягчается и также утрачивает эластичность.
Эластичность кожи, тканей имеет важное значение при эксплуатации изделий из них. Чем выше эластичность, тем больше срок носки одежды и обуви, меньше сминаемость.
Пластичность — способность объекта к необратимым деформациям, вследствие чего изменяется первоначальная форма, а после прекращения внешнего воздействия сохраняется новая форма. Типичным примером пластичных материалов служат воск и глина. Пластичность сырья и полуфабрикатов используется при формовании готовых изделий.
Вязкость (внутреннее трение) — свойство газов, жидкостей и твердых тел, обусловливающее сопротивление слоев относительному перемещению под действием внешних сил. Вязкость зависит от химического состава (содержания воды, сухих веществ, жира) и температуры товара. При повышении содержания воды и жира, а также температуры снижается вязкость сырья, полуфабрикатов и готовых изделий, что облегчает их приготовление. Так, при формовании корпусов конфет из помадных масс или пралине большое значение имеет их вязкость.
Теплофизические свойства — свойства, характеризующие индивидуальное термодинамическое состояние единичных экземпляров товаров. К ним относятся термодинамическая температура, температура плавления, застывания и замерзания, а также огнестойкость
Электрофизические свойства — способность товаров изменяться под влиянием внешнего электрического поля. Показателями этих свойств являются электропроводность и диэлектрическая проницаемость товаров. Их учитывают в большей степени при оценке качества электротехнических товаров, в меньшей — пищевых продуктов.
Электропроводность — способность объектов проводить электрический ток. По электропроводности все материальные объекты делят на проводники, полупроводники и изоляторы. Электропроводность материалов, применяемых для электро-технических товаров, служит одним из факторов обеспечения электротехнической безопасности.
Диэлектрическая проницаемость — величина, влияющая на количество энергии, которая может быть аккумулирована в виде электрического поля. Диэлектрическую проницаемость изучают для выявления изменений товаров в электромагнитных полях. Этот показатель зависит от температуры и химического состава объекта.
Оптические свойства — свойства, обусловленные способностью товаров рассеивать, пропускать или отражать свет. К основным оптическим свойствам относятся цвет, прозрачность, преломляемость света, зависящие от отражательной, поглотительной или пропускающей способности объектов
Акустические свойства — способность товаров издавать (излучать), поглощать и проводить звук. К акустическим свойствам относятся акустические колебания, спектр звука, скорость звука, сила (интенсивность), тон звука. Акустические свойства материалов или изделий имеют практическое значение для количественных характеристик ряда потребительских товаров. В зависимости от акустических свойств можно выделить три группы товаров: звуковые, или аудиотовары; звукопроводящие; звукоизоляционные.
К физико-химическим относятся свойства, проявление которых сопровождается физическими и химическими явлениями в различных условиях среды. Их учитывают при оценке качества тканей, кожи, древесины, строительных материалов и других изделий.
Проявление этих свойств состоит, как правило, в проникновении одного тела или вещества в другое или на их химическом взаимодействии. От физико-химических свойств зависит назначение и поведение материалов и изделий в различных условиях производства и эксплуатации. К физико-химическим свойствам относят свойства, характеризующие проницаемость материалов и изделий. К ним относятся водо-, паро-, воздухо- и пылепроницаемость, влажность и др. Знание этих свойств и их показателей необходимо для правильного назначения, условий эксплуатации и оценки качества кровельных, гидроизоляционных и других материалов и изделий. [5]
Ø Водопроницаемостьхарактеризует способность материала или изделия пропускать воду при определенном давлении. Зависит она от природы материала и наличия в нем сообщающихся и сквозных пор. Чем их больше, тем больше воды пропускает материал. Характеризуется водопроницаемость количеством воды (мл), которое пропускает материал в единицу времени (ч) через площадь 1 см2 и выражается в мл/(см2.ч).
Практическое значение водопроницаемость имеет при оценке качества обуви, посуды, пленок, кровельных материалов, брезентов и других материалов. Для снижения водопроницаемости материалов и изделий их обрабатывают водоотталкивающими веществами или пропитывают специальными составами.
Ø Паропроницаемостьхарактеризует способность материала пропускать пар из среды с большей в среду с меньшей влажностью. Паропроницаемость имеет важное значение при оценке качества тканей, кожи, одежды, обуви и других материалов и изделий из них. Выражается она количеством пара (мг), которое проходит в единицу времени (ч) через материал площадью в 1 см2. Она зависит от природы и пористости материала. Материалы с высокой пористостью, как правило, имеют и высокую паропроницаемость.
Ø Воздухопроницаемость– это способность материала пропускать воздух при различном давлении по обе стороны. Она характеризует количеством воздуха (мл), прошедшего в единицу времени (с)через материал площадью в 1 см2 при определенном давлении, и выражается в мл/(см2с). Воздухопроницаемость зависит от величины и характера пор и влажности материала. С увеличением крупных, сообщающихся пор воздухопроницаемость повышается, а при увлажнении понижается. Большое значение воздухопроницаемость имеет для парашютных тканей.
Ø Пылепроницаемостьхарактеризует способность материала пропускать частицы пыли. Она зависит от природы и пористости материала, а также от природы пыли, размера частиц и их количества. Материалы с мелкими извилистыми порами обладают меньшей пылепроницаемостью. Она зависит также от характера поверхности материала. Так, например, шерстяные ткани благодаря чешуйчатой поверхности обладают большей пылеемкостью по сравнению с льняными. Пылепроницаемость определяется по привесу образца (г), через который пропускали пыль. Пылепроницаемость имеет важное значение при выборе фильтрующих материалов.
При оценке водо-, воздухо-, пыле- и паропроницаемости материалов и изделий необходимо иметь в виду их влажность и водопоглощение.
Ø Влажностьхарактеризуется количеством воды, содержащейся в материале, и выражается в процентах. Определяют ее по разности в весе образца материала влажного и высушенного до постоянного веса. Влажность материала зависит от его пористости. Влажность необходимо учитывать при транспортировании, хранении и приемке материалов по весу. От влажности материала зависит его теплопроводность и устойчивость к гниению.
Ø Водопоглощение характеризует способность материалов и изделий впитывать и удерживать воду. Она характеризует степень заполнения объема пор водой и выражается в процентах. Водопоглощение может быть весовым и объемным. Объемное водопоглощение равно объему пор в материале, доступном для воды. Водопоглощение материала зависит от количества и характера пор. С повышением пористости водопоглощение возрастает. Оно выше при открытых и ниже при замкнутых или полузамкнутых порах. Водопоглощение разных материалов неодинаково. Так, глияный кирпич имеет водопоглощение не менее 8 %, керамические плитки для полов – не более 4 %, гранит – 0,5 %, фарфор – не более 0,2 %. По водопоглощению можно судить о прочности и морозостойкости материала. Материалы с повышенным водопоглощением имеют, как правило, пониженную прочность и морозостойкость. Водопоглощение имеет важное значение при оценке качества керамических материалов. Для некоторых из них показатель водопоглощения нормируется стандартами.
Ø Водостойкость– это способность материала не изменять свою прочность при насыщении водой. Показателем водостойкости является коэффициент размягчения, который представляет собой отношение прочности материала, насыщенного водой, к прочности его в сухом состоянии. Материалы с коэффициентом размягчения меньше на 0,8 являются водостойкими. Водостойкими являются каменные материалы. Водостойкость имеет важное значение при оценке несущих конструкций, стен и перекрытий, а также других материалов, предназначенных для эксплуатации во влажных условиях.
Ø Морозостойкостьхарактеризует способность материала, насыщенного водой, сохранять свои свойства без признаков разрушения при попеременном замораживании и оттаивании. Морозостойкость имеет важное значение для оценки качества материалов, применяемых для наружных конструкций гидротехнических и других сооружений (кирпич, камень, бетон и др.). Эти материалы при попеременном увлажнении, замерзании и оттаивании в осенне-зимнее время постепенно разрушаются, так как вода, находящаяся в порах материала, замерзает с увеличением в объеме на 9-10 %.
Морозостойкость зависит от величины и характера пор, а также от прочности. Материалы плотные, с замкнутыми порами, более морозостойки, чем пористые материалы. Морозостойкость характеризуется количеством циклов попеременного замораживания в течение пяти часов при – 150С и оттаивания также в течение пяти часов при + 150С без появления признаков разрушения и понижения прочности. К различным по назначению материалам предъявляются и различные требования по морозостойкости (от 10 до 200 циклов). Кирпич, например, по морозостойкости подразделяется на марки: Мрз 15, 35, 50 и др. Морозостойкость определяется в специальных камерах. Два цикла замораживания и оттаивания равнозначны разрушениям, которые испытывает материал в условиях эксплуатации в течение одного года.
Биологические свойства характеризуют устойчивость изделий к действию различных микроорганизмов (плесеней, грибков, гнилостных бактерий и др.). Важное значение имеют эти свойства для материалов и изделий органического происхождения (древесина, некоторые виды пластических масс, бумага, ткани и др.). Под влиянием микроорганизмов эти материалы разрушаются, что сопровождается снижением прочности, ухудшением внешнего вида и другими признаками. Неорганические материалы к воздействию микроорганизмов стойки, практически разрушению не подвергаются или подвергаются в малой степени. Степень разрушения материалов во многом зависит от влажности, температуры и значения рН среды. С повышением влажности и температуры гнилостные процессы ускоряются.
Для повышения биостойкости некоторые материалы и изделия обрабатывают специальными антисептическими средствами в виде легкорастворимых и нерастворимых веществ. В качестве легкорастворимых антисептиков используют фтористый натрий, кремнефтористый натрий и др. Из нерастворимых применяют антраценовое, креозотовое и другие масла. Применяют также порошкообразные вещества (нафталин и др.).
Биологические свойства материалов необходимо учитывать при определении вида упаковки, условий транспортирования и хранения, а также условий их использования, что позволит удлинить срок службы материалов.
Контрольные вопросы
1. Разберите общую классификацию химических веществ и укажите ее классификационные признаки.
2. Дайте характеристику воды, содержащейся в товарах.
3. Рассмотрите неорганические вещества товаров, их классификацию и характеристику отдельных подгрупп.
4. Назовите важнейшие группы и подгруппы органических веществ, их различия с неорганическими.
5. Охарактеризуйте основные подгруппы и виды мономеров, олигомеров и полимеров.
6. Перечислите подгруппы биополимеров и дайте их характеристику.
7. Назовите общие и специфичные физические свойства товаров.
8. Охарактеризуйте важнейшие общие физические свойства товаров.
9. Разберите специфичные физические свойства товарных партий и упаковочных единиц.
10. Дайте классификацию специфичных физических свойств единичных экземпляров товаров.
11. Охарактеризуйте следующие группы физических свойств товаров:
структурно-механические;
теплофизические;
электрофизические;
оптические;
акустические.
Дата добавления: 2018-05-10; просмотров: 4418;