Лекция 15. Ряд Тейлора.
Ряд Тейлора.
Рядом Тейлора называется степенной ряд вида (предполагается, что функция является бесконечно дифференцируемой).
Рядом Маклоренаназывается ряд Тейлора при , то есть ряд .
Теорема.Степенной ряд является рядом Тейлора для своей суммы.
Доказательство. Пусть и степенной ряд сходится в интервале . Подставим в разложение , получим .
Так как степенной ряд сходится равномерно внутри интервала сходимости, мы можем его дифференцировать почленно. Полученный ряд будет сходиться в том же интервале, так как радиус сходимости при дифференцировании не меняется. Его вновь можно дифференцировать почленно и т.д. Вычислим коэффициенты в степенных рядах, полученных почленным дифференцированием. = ,
, , ,
, , ,
Продолжая этот процесс, получим . Это – коэффициенты ряда Тейлора. Поэтому степенной ряд есть ряд Тейлора.
Следствие.Разложение функции в степенной ряд единственно.
Доказательство. По предыдущей теореме коэффициенты разложения функции в степенной ряд определяются однозначно, поэтому разложение функции в степенной ряд единственно.
Дата добавления: 2017-11-21; просмотров: 1183;