Запись поверхностного интеграла второго рода.


 

Запишем вектор перемещений частиц и нормаль в точке M(x, y, z), выделяя скалярные компоненты векторов

,

, . Знак «+» выбирается, если угол между нормалью к поверхности и осью (OX в первом интеграле, OY во втором, OZ в третьем) острый, знак «-» выбирается, если угол тупой. В самом деле, в поверхностных интегралах площади элементов поверхности положительны, а знаки «+» или «–» компенсируют знак косинуса угла между нормалью и координатной осью. При переходе от поверхностных интегралов к двойным одна из координат подставляется из уравнения поверхности, чтобы точка (x, y, z) находилась на поверхности .

 

Пример. Найти поток радиуса-вектора через полную поверхность тетраэдра, ограниченного координатными плоскостями и плоскостью x + y + z = 1

Поток радиус-вектора через координатные плоскости нулевой, так как на них радиус-вектор точки лежит в координатной плоскости и ортогонален нормали к координатной плоскости, т.е. . Вычислим поток через грань тетраэдра, лежащую в плоскости x + y + z =1. Он и будет суммарным потоком, так как поток через остальные грани нулевой. Для этой грани , площадь грани – треугольника по теореме Пифагора равна (проверьте). Поток равен  

 

Поток равен .

Вычислим поток через двойные интегралы проектированием на координатные плоскости. Поток радиус-вектора через координатные плоскости нулевой. Тогда

=

= .

Получили тот же результат.

 

 

Лекция 8



Дата добавления: 2017-11-21; просмотров: 1011;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.