Аффинная система координат на плоскости


О п р е д е л е н и е. Аффинной системой координат на плоскости (аффинным репером) называется точка и два неколлинеарных вектора: .

Прямые и , определяемые точкой и векторами и , называются соответственно осью абсцисс и осью ординат.

Частным случаем аффинной системы координат является прямоугольная система координат , определяемая точкой и ортогональными ортами .

О п р е д е л е н и е. Вектор называется радиус-вектором точки .

О п р е д е л е н и е. Координатами точки называются координаты её радиус-вектора: .

У п р а ж н е н и е. Построить точку по координатам в заданном аффинном репере.

У п р а ж н е н и е. Найти координаты вершин правильного шестиугольника с центром относительно аффинной системы координат .

Отметим простейшие задачи, решаемые с помощью координат

1. Определение координат вектора по координатам начала и конца относительно аффинной системы координат:

,

.

2. Вычисление координат точки по заданному простому отношению трех точек прямой и координатам двух из них относительно аффинной системы координат.

О п р е д е л е н и е. Простым отношением трех точек прямой, заданных в указанном порядке, называется число , такое, что (обозначение ).

У п р а ж н е н и е. На прямой выбраны точки так, что . Определить .

Имеем , и , то есть . Переходя к координатам векторов, получим Отсюда получаем возможность выразить координаты точки : .

В частности, если середина , то и получаем – координаты середины отрезка равны полусуммам соответствующих координат концов отрезка.

3. Вычисление расстояния между точками по координатам относительно прямоугольной системы координат.

Имеем . Расстояние можно найти как длину вектора . Поскольку базис ортонормированный, то получаем:

– расстояние между точками равно корню квадратному из суммы квадратов разностей соответствующих координат точек.

 



Дата добавления: 2021-09-25; просмотров: 432;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.