Третий закон Ньютона
Третий закон Ньютона имеет дело со взаимодействующими, телами. Он утверждает, что силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению. Важно подчеркнуть, что силы, о которых идет речь, приложены к разным взаимодействующим друг с другом телам.
Уравнения Ньютона обладают тем свойством, что некоторые величины, характеризующие движение частицы, остаются неизменными во все время движения. О таких величинах принято говорить, что они сохраняются. Их также называют интегралами движения. Знание интегралов движения позволяет получить ряд важных следствий без фактического решения уравнений движения. Рассмотрим тело или систему тел в отсутствие внешних сил. Система тел, на которую не действуют внешние силы (или векторная сумма этих сил равна нулю), является замкнутой. В этом случае F = 0; как видно из уравнения (1.1)
, (1.2)
т.е. величина , остается постоянной во все время движения. Полученный результат представляет собой закон сохранения импульса, который имеет место как для одного тела, так и для системы тел в отсутствие внешних сил.
Закон сохранения импульса пока не опровергнут ни в каких опытах: ни в макроскопической классической физике, ни в микромире, ни при релятивистских скоростях движения.
Для вывода третьего закона Ньютона рассмотрим изолированную систему, состоящую только из двух взаимодействующих тел. Полный импульс такой системы составляет . Продифференцируем это уравнение по времени и учтем закон сохранения импульса
Из второго закона Ньютона
где F12 – сила, действующая со стороны второго тела на первое, а F21 – сила, с которой первое тело действует на второе. Их еще называют силами действия и противодействия.
Мы получили третий закон Ньютона:
Следует учитывать, что третий закон Ньютона строго выполняется лишь для статических и контактных взаимодействий. Дело в том, что сигнал взаимодействия распространяется с конечной скоростью: в вакууме со скоростью света, в твердом теле – со скоростью продольной волны.
Центр инерции
Импульс замкнутой механической системы имеет различные значения по отношению к различным инерциальным системам отсчета. Если система отсчета K' движется относительно системы K со скоростью V, то скорости частиц v'α и vα в этих системах связаны соотношением vα = v'α + V . Поэтому связь между значениями P и P' импульса в этих системах дается формулой:
или
Всегда можно подобрать такую систему отсчета K', в которой полный импульс обращается в нуль. Положив P' =0, находим, что скорость этой системы отсчета
. (1.3)
Если полный импульс механической системы равен нулю, то говорят, что она покоится относительно соответствующей системы координат. Скорость Vимеет смысл скорости движения механической системы как целого с отличным от нуля импульсом. Связь между импульсом Pи скоростью Vсистемы как целого такая же, какая была бы между импульсом и скоростью одной материальной точки с массой, равной сумме масс в системе, .
Правая сторона формулы (1.3) может быть представлена как полная производная по времени от выражения:
(1.4)
Можно сказать, что скорость V системыкак целого есть скорость перемещения в пространстве точки, радиус-вектор которой дается формулой (1.4). Такая точка является центром инерции системы.
Закон сохранения импульса замкнутой системы можно сформулировать как утверждение о том, что ее центр инерции движется прямолинейно и равномерно. Это есть обобщение закона инерции для свободной материальной точки.
Дата добавления: 2017-10-04; просмотров: 1023;