ИСТОРИЯ РАЗВИТИЯ ГЕНЕТИКИ


Генетика относится к биологическим наукам. Ее название происходит от латинского слова geneo (рождаю) или genus (род), указывающего, что она изучает наследственность организмов.

Под наследственностью обычно понимают свойство родителей передавать свои признаки и особенности родителей следующему поколению. Наследственность же неразрывно связана с изменчивостью, а потому генетика изучает оба эти свойства организма, то есть является наукой о наследственности и изменчивости.

Генетика как наука еще очень молода, она существует с 1900 года, когда три ученых в разных странах, Гуго де Фриз (1848 - 1935) в Голландии, Карл Корренс (1864 - 1933) в Германии и Эрих Чермак (1871 -1962) в Австрии открыли закономерности расщепления в потомстве внутривидовых гибридов энотеры, мака, дурмана, гороха.

Оказалось, что три ботаника, открывшие закономерности расщепления в потомстве внутривидовых гибридов, всего-навсего “переоткрыли” закономерности наследования, открытые еще в 1865 года Грегором Иоганном Менделем (1822 - 1884), доложенные им в феврале и марте и опубликованные в “Трудах” Общества естествоиспытателей в городе Брюнне (Брно, Австро-Венгрии, нынешняя Чехия) в 1866 году в статье “Опыты над растительными гибридами”.

Как самостоятельная наука генетика выделилась из биологии в 1907 году по предложению ученого Уильям Бэтсона (1861 - 1926). Им же предложено название новой науки. За эти годы генетика достигла поразительных успехов.

Обычно историю генетики делят на этапы классической и молекулярной генетики. Однако, по мнению Николая Петровича Дубинина (1907 - 1988), в развитии генетики можно выделить три этапа,

Первый этап - это эпоха классической генетики, длившаяся с 1900 по 1930 гг. (за успехи в классической генетике наших ученых иногда этот период называют “русским”). Это было время создания теории гена и хромосомной теории наследственности, разработки учения о фенотипе и генотипе, о взаимодействии генов, разработаны генетические принципы индивидуального отбора в селекции, обосновано учение о мобилизации генетических ресурсов планеты для целей селекции.

Второй этап - 1930-1953 гг. - этап неоклассицизма в генетике. Открыта возможность искусственного изменения в генах и хромосомах -экспериментальный мутагенез; обнаружено, чтоген - это сложная система, дробимая на части; обоснованы принципы генетики популяций и эволюционной генетики; создана биохимическая генетика, изучающая процессы биосинтеза в клетке и организме; было получено свидетельство, что молекулы ДНК служат основой для генетической информации; обоснованы принципы медицинской и радиационной генетики. Был получен огромный фактический материал, углубивший принципы классической генетики с одновременным пересмотром ряда старых положений.

Третий этап - с 1953 года и до настоящего времени - эпоха синтетической генетики, когда была раскрыта структура и генетическая значимость молекулы дезоксирибонуклеиновой кислоты (ДНК). К этому времени развитие теории гена и теории мутаций, биохимической и эволюционной генетики, генетики человека и других разделов генетики достигли новых рубежей и, объединившись с молекулярной генетикой, обеспечили синтетический подход к проблеме наследственности.

Для того чтобы понять развитие генетики, необходимо сделать небольшой исторический обзор, остановиться на воззрениях первых гибридизаторов растений, сыгравших большую роль в истории изучения явлений наследственности.

Попытки человечества познать явления наследственности уходят своими корнями в глубокую древность. Эти явления прежде всего можно наблюдать на самом человеке и домашних животных. Уже тогда было понятно, что в зачатии и зарождении человека необходимо участие мужского семени, поэтому представления о явлениях развития и наследственности были связаны с тем или иным решением вопроса о происхождении этого семени. Алкемои (VI - начало V в. до н. э.), врач и натурфилософ, считал, что семя происходит из мозга; Демокрит (470 -380 гг. до н. э.) считал, что семя происходит из всех частей тела, также считал и Гиппократ (V в. до н.э.). Диоген (V в. до н.э.) считал, что семя образуется из коры. Аристотель (384 - 322 гг. до н. э.) считал, что семя образуется из крови. Ему были известны скрещивания между различными видами. Тит Лукреций Кар (ок. 98-55 гг. до н. э.) в своей поэме “О природе вещей” утверждал, что “зависят всегда от двойного семени дети”: “Ибо нередко отцы в своем собственном теле скрывают множество первоначал в смешении многообразном, из роду в род от отцов к отцам по наследству идущим. Так производит детей жеребьевкой Венера, и предков, волосы, голос, лицо возрождает она у потомков”.

А.Е. Гайсинович указывает о неком предвосхищении Лукрецием понятия наследственных факторов (“первоначал”), определяющих передачу потомкам отдельных признаков, свойственных предкам, и их независимое комбинирование (“жеребьевкой”) на основе чистой случайности. Таким образом, Лукреций, как бы предвосхитил закономерности, установленные Г. Менделем.

Эволюция представлений о поле иразмножении у растенийпротекала совершенно иначе. Установлено, что не только древние греки и римляне знали о существовании полов у растений (Геродот, Теофраст, Плиний), но еще раньше (более 2000 лет до н. э.), вавилоняне и ассирийцы проводили искусственное опыление финиковых пальм. Аристотель считал, что в “растениях женский пол не отделен от мужского”, он знал о существовании и раздельнополых растений. Теофраст, ученик Аристотеля (372 - 287 гг. до н. э.), обладал обширными познаниями о растениях, описывал строение женских цветков и процесс опыления у многих растений.

Как ни скудны и противоречивы были познания античных авторов о поле у растений, они во многом предвосхитили науку Нового времени. Их знания заимствовали арабы. Для европейской науки эти познания оказались потерянными вплоть до XVII века. И практика далеко опередила теорию, которая находилась в течение многих веков под определенным влиянием религиозно-философских учений, препятствующих в ряде случаев признанию даже и очевидной истины.

В 1694 году Рудольф Якоб Камерариус (1665 - 1721) обнаружил мужские и женские органы у растений и необходимость опыления для образования плодов. Он сразу понял значение сделанного им открытия в отношении возможности искусственного получения гибридов. Он писал:

“Новостью здесь является трудный вопрос: может ли женское растение оплодотворяться мужским растением другого вида, например, женская конопля мужским хмелем и так далее; подучится ли при этом зародыш и насколько он изменен”.

Еще раньше в XVI веке в Америке внимание европейцев привлекает “индийский злак” - кукуруза. Уже первые наблюдения показали, что в початках имеются зерна различной окраски: голубые, желтые, красные, белые. Это поразительное явление рассматривалось как непонятная игра природы.

На первом этапе развития учения о гибридизации внимание ученых и практиков-селекционеров фиксировалось на проблеме полов у растений;

гибридизация рассматривалась именно под углом зрения доказательства существования их, участия мужского и женского полов в оплодотворении и передачи обоих признаков потомству.

Томас Ферчайльд, английский торговец-садовод, создал в 1717 году первый искусственный растительный гибрид между Dianthus caryophyllus (красной гвоздики) и D. barbatus (вильям-душистой). Гибрид напоминал переходное растение между родителями. Этот первый “растительный мул” произвел большое впечатление на современников и получил широкую известность.

Особенное впечатление на современников произвели опыты

И. Г. Гледича (1714 - 1786), директора Берлинского ботанического сада, который опылил пестичное пальмовое дерево в 1749 году пыльцой мужской пальмы, присланной из Лейпцига. Полученные семена были высеяны в 1750 году и дали проростки, то есть было доказано наличие полов у растений.

В 1721 году видный ботаник Филипп Миллер (1691 - 1771) наблюдал спонтанную гибридизацию разновидностей капусты.

Американский ботаник Дж. Бартрам (1701 - 1774) в 1739 году провел эксперименты по скрещиванию нескольких видов одного и того же рода Lichens и получил диковинные смешанные окраски цветков.

Чрезвычайно важное значение имели вопросы полового размножения растений для Карла Линнея (1707 - 1778). Его систематика классов растений была построена на классификации по признаку органов плодообразования. Для Линнея основным критерием признаков вида являлась их наследственная неизменность при половом размножении.

В 1760 году Йозеф Готлиб Кельрейтер (1733 -1806) начал свои опыты по гибридизации. К этому времени уже было установлено наличие полов у растений, доказана возможность искусственного опыления и гибридизации, и разработаны их основные приемы. И. Кельрейтер считает гибриды нечто средним между родительскими формами. Он первым установил явление гетерозиса, применил анализирующее скрещивание, но не сумел глубоко проникнуть в сущность наблюдаемых им явлений.

Многочисленные эксперименты, исследования на гибридах поставили перед естествоиспытателями вопрос о виде: могут ли возникнуть гибриды между видами и постоянно ли число видов?

Томас Эндрю Найт (1759 - 1838) занимался гибридизацией плодовых деревьев, наблюдал доминирование признаков по окраске гороха. Как и Кельрейтер, он констатировал мощное развитие гибридов первого поколения, установил принципы опыления, которые Дарвин позднее назвал законом, известным сейчас как “закон Найта - Дарвина”:

“Природа стремится к тому, чтобы половая связь имела место между соседними растениями одного и того же вида”.

Работая с луковичными, Уильям Герберт (1778 - 1847), настоятель Манчестерского собора, в 1822 году пришел к выводу, что не всегда было столько видов, сколько их существует теперь; поэтому не только разновидности, но и виды произошли в разное время на протяжении веков от немногих исходных родов под влиянием климата, почвы и скрещивания.

В 1852 году начал свои исследования по гибридизации Шарль Ноден (1815 - 1899). Он разделяет учение об изменчивости видов, выясняет явление доминирования, считая, что гибриды получают признаки от отца и матери, но в разном количестве. Ш. Ноден очень близко подошел к пониманию закономерностей наследуемости, но многие его открытия носили полуинтуитивный характер. Основной своей заслугой Ш. Ноден считал то, что он своими работами открывает новые пути для определения вида и его границ: “Нет никакого качественного различия между видами, расами и разновидностями”.

Основные законы наследственности были открыты Грегором Иоганном Менделем (1822 - 1884), монахом августинского монастыря из австрийского города Брюнне (ныне Брно, Чехия). Он родился в крестьянской семье в Хейнцендорфе, и начальное образование получил в местной школе. В 1840 году окончил гимназию, а в 1842 - философскую школу в Ольмюце. В 1843 году Г. Мендель поступает в древний старобрюнский монастырь августинцев, где был посвящен в послушники под именем Грегора. Тяга к науке заставляет его хлопотать о поступлении в Венский университет. По разрешению епископа Г. Мендель поступает в университет в качестве вольнослушателя, где в течение четырех семестров (1851 - 1853) он прослушал экспериментальную математику, физику, высшую математику, химию, зоологию, ботанику, физиологию, фитопатологию и энтомологию. Вернувшись в монастырь, Г. Мендель в 1854 году, поступил преподавателем физики и природоведения в реальное училище в Брюнне. Одновременно ему было поручено заведование естественно-историческими коллекциями училища. 30 марта 1868 года Г. Мендель был избран прелатом монастыря.

Г. Мендель берется за исследование вопроса о количестве пыльцевых зерен, участвующих в оплодотворении. И, опылив одним единственным пыльцевым зерном Mirabilis jalapa, Г. Мендель получил 18 хорошо развитых семян и от них столько же растений, большинство из которых развились так же пышно, как и растения, происшедшиеот самоопыления. Затем он переходит к опытам с горохом.

Примерно с 1854 года, Г. Мендель начал экспериментировать с горохом (Pisum sativum). В 1856 году он провел первые опыты по скрещиванию различных сортов гороха для того, чтобы узнать, как передаются по наследству индивидуальные признаки этого организма. Опыты проводились до 1863 года. В 1865 году результаты экспериментов были доложены на двух заседаниях - 8 февраля и 8 марта. Краткие рефераты докладов Г. Менделя были опубликованы в Брюнне в газете “Новости” 9 февраля и 10 марта 1865 года. В конце 1866 году по решению членов Общества работа была опубликована в “Трудах” Общества в Брюнне (Брно) и называлась “Опыты над растительными гибридами”. Длясвоих опытов Г. Мендель подверг двухгодичному испытанию 34 сорта гороха, получив от каждого из них по два поколения растений. Из них он отобрал 22 сорта гороха, имеющих альтернативные различия по 7 признакам: форме семян (гладкие и морщинистые), цвету их эндосперма (желтый или зелёный), их кожуры (белая или коричневая), форме бобов (выпуклые или с перехватом), их окраске в незрелом состоянии (желтая или зеленая), расположению цветков (пазушные или верхушечные), высоте растения (высокие или карликовые).

Он убедился, что они представляют собой наследственно чистые формы, так как в ряде потомств они не давали никаких уклонений от стандартных признаков сорта. Проведя скрещивание между растениями, отличающимися по одному признаку, скрестив между собой полученное потомство, он сформулировал два закона наследственности. К этим законам был добавлен третий после скрещивания растений, отличающихся двумя признаками:



Дата добавления: 2017-09-01; просмотров: 5154;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.013 сек.