Изгибающий момент и поперечная сила
Как известно из теоретической механики, опорные реакции балок определяют, составляя для всей балки и решая уравнения равновесия статики. Будем помнить, что при определении внутренних сил реакции связей учитываются наравне с активными внешними силами, действующими на балку.
Для определения внутренних силовых факторов применим метод сечений, причем изображать балку будем только одной линией — осью, к которой приложены активные и реактивные силы. Рассмотрим два случая:
1. К балке приложены две равные и противоположные по знаку пары сил (рис. 23.3).
Рассматривая равновесие части балки, расположенной слева или справа от сечения 1—1, видим, что во всех поперечных сечениях возникает только изгибающий момент Ми, равный внешнему моменту. Таким образом, рассматриваемый случай есть случай чистого изгиба.
Изгибающий момент есть результирующий момент относительно нейтральной оси внутренних нормальных сил, действующих в поперечном сечении балки.
Обратим внимание на то, что изгибающий момент имеет разное направление для левой и правой частей балки. Это говорит о непригодности правила знаков статики при определении знака изгибающего момента.
2. К балке приложены активные и реактивные силы, перпендикулярные оси (рис. 23.4).
Рассматривая равновесие частей балки, расположенных слева и справа, видим, что в поперечных сечениях должны действовать изгибающий момент Мии поперечная сила Q.Из этого следует, что в рассматриваемом случае в точках поперечных сечений действуют не только нормальные напряжения, соответствующие изгибающему моменту, но и касательные, соответствующие поперечной силе.
Поперечная сила есть равнодействующая внутренних касательных сил в поперечном сечении балки.
Обратим внимание на то, что поперечная сила имеет противоположное направление для левой и правой частей балки, что говорит о непригодности правила знаков статики при определении знака поперечной силы.
Изгиб, при котором в поперечном сечении балки действуют изгибающий момент и поперечная сила, называется поперечным.
Нетрудно видеть, что в общем случае при поперечном изгибе изгибающий момент и поперечная сила в разных сечениях могут иметь неодинаковое значение.
У балки, находящейся в равновесии под действием плоской системы сил, алгебраическая сумма моментов всех активных и реактивных сил относительно любой точки равна нулю; следовательно, сумма моментов внешних сил, действующих на балку левее сечения, численно равна сумме моментов всех внешних сил, действующих на балку правее сечения.
Таким образом, изгибающий момент в сечении балки численно равен алгебраической сумме моментов относительно центра тяжести сечения всех внешних сил, действующих справа или слева от сечения.
У балки, находящейся в равновесии под действием плоской системы сил, перпендикулярных оси (т. е. системы параллельных сил), алгебраическая сумма всех внешних сил равна нулю; следовательно, сумма внешних сил, действующих на балку левее сечения, численно равна сумме сил, действующих на балку правее сечения.
Таким образом, поперечная сила в сечении балки численно равна алгебраической сумме всех внешних сил, действующих справа или слева от сечения.
Так как правила знаков статики неприемлемы для установления знаков изгибающего момента и поперечной силы, установим для них другие правила знаков, а именно:
если внешняя нагрузка стремится изогнуть балку выпуклостью вниз, то изгибающий момент в сечении считается положительным, и наоборот, если внешняя нагрузка стремится изогнуть балку выпуклостью вверх, то изгибающий момент в сечении считается отрицательным (рис. 23.5);
если сумма внешних сил, лежащих по левую сторону от сечения, дает равнодействующую, направленную вверх, то поперечная сила в сечении считается положительной, если равнодействующая направлена вниз, то поперечная сила в сечении считается отрицательной; для части балки, расположенной справа от сечения, знаки поперечной силы будут противоположными (рис. 23.6).
Пользуясь этими правилами, следует мысленно представлять себе сечение балки жестко защемленным, а связи отброшенными и замененными реакциями.
Подчеркнем, что для определения опорных реакций пользуются правилами знаков статики; для определения знаков изгибающего момента и поперечной силы — правилами знаков сопротивления материалов.
Правило знаков для изгибающих моментов иногда называют «правилом дождя» (имея в виду, что в случае выпуклости вниз образуется воронка, в которой задержится дождевая вода, и наоборот).
Дата добавления: 2021-09-07; просмотров: 421;