Уравнения с разделяющимися переменными

 

Определение. Дифференциальное уравнение называется уравнением с разделяющимися переменными, если его можно записать в виде

.

 

 

Такое уравнение можно представить также в виде:

 

Перейдем к новым обозначениям

 

Получаем:

 

 

После нахождения соответствующих интегралов получается общее решение дифференциального уравнения с разделяющимися переменными.

Если заданы начальные условия, то при их подстановке в общее решение находится постоянная величина С, а, соответственно, и частное решение.

 

 

Пример. Найти общее решение дифференциального уравнения:

 

 

 

Интеграл, стоящий в левой части, берется по частям (см. Интегрирование по частям.):

 

- это есть общий интеграл исходного дифференциального уравнения, т.к. искомая функция и не выражена через независимую переменную. В этом и заключается отличие общего (частного) интеграла от общего (частного) решения.

 

Чтобы проверить правильность полученного ответа продифференцируем его по переменной х.

- верно

 

Пример. Найти решение дифференциального уравнения при условии у(2) = 1.

 

при у(2) = 1 получаем

Итого: или - частное решение;

 

Проверка: , итого

 

- верно.

 

Пример. Решить уравнение

- общий интеграл

- общее решение

 

Пример. Решить уравнение

 

 

 

Пример. Решить уравнение при условии у(1) = 0.

Интеграл, стоящий в левой части будем брать по частям (см. Интегрирование по частям. ).

 

 

Если у(1) = 0, то

 

Итого, частный интеграл: .

 

 

Пример. Решить уравнение .

 

 

 

Для нахождения интеграла, стоящего в левой части уравнения см. Таблица основных интегралов. п.16. Получаем общий интеграл:

 

 

Пример. Решить уравнение

Преобразуем заданное уравнение:

Получили общий интеграл данного дифференциального уравнения. Если из этого соотношения выразить искомую функцию у, то получим общее решение.

 

 

Пример. Решить уравнение .

 

 

; ;

Допустим, заданы некоторые начальные условия х0 и у0. Тогда:

 

Получаем частное решение

 

 

Однородные уравнения.

 

Определение. Функция f(x, y) называется однородной n – го измерения относительно своих аргументов х и у, если для любого значения параметра t (кроме нуля) выполняется тождество:

 

 

Пример. Является ли однородной функция

 

 

Таким образом, функция f(x, y) является однородной 3- го порядка.

 

 

Определение. Дифференциальное уравнение вида называется однородным, если его правая часть f(x, y) есть однородная функция нулевого измерения относительно своих аргументов.

 

Любое уравнение вида является однородным, если функции P(x, y) и Q(x, y) – однородные функции одинакового измерения.

 

Решение любого однородного уравнения основано на приведении этого уравнения к уравнению с разделяющимися переменными.

 

Рассмотрим однородное уравнение

Т.к. функция f(x, y) – однородная нулевого измерения, то можно записать:

 

Т.к. параметр t вообще говоря произвольный, предположим, что . Получаем:

Правая часть полученного равенства зависит фактически только от одного аргумента , т.е.

Исходное дифференциальное уравнение таким образом можно записать в виде:

Далее заменяем y = ux, .

 

таким образом, получили уравнение с разделяющимися переменными относительно неизвестной функции u.

 

Далее, заменив вспомогательную функцию u на ее выражение через х и у и найдя интегралы, получим общее решение однородного дифференциального уравнения.

 

 

Пример. Решить уравнение .

 

Введем вспомогательную функцию u.

.

Отметим, что введенная нами функция u всегда положительна, т.к. в противном случае теряет смысл исходное дифференциальное уравнение, содержащее .

Подставляем в исходное уравнение:

 

 

Разделяем переменные:

 

Интегрируя, получаем:

 

Переходя от вспомогательной функции обратно к функции у, получаем общее решение:

 

 

 

Уравнения, приводящиеся к однородным.

 

Кроме уравнений, описанных выше, существует класс уравнений, которые с помощью определенных подстановок могут приведены к однородным.

 

Это уравнения вида .

Если определитель то переменные могут быть разделены подстановкой

где a и b - решения системы уравнений

 

 

Пример. Решить уравнение

Получаем

 

Находим значение определителя .

Решаем систему уравнений

 

Применяем подстановку в исходное уравнение:

 

Заменяем переменную при подстановке в выражение, записанное выше, имеем:

 

Разделяем переменные:

 

 

Переходим теперь к первоначальной функции у и переменной х.

 

 

Итого, выражение является общим интегралом исходного дифференциального уравнения.

 

 

В случае если в исходном уравнении вида определитель то переменные могут быть разделены подстановкой

 

 

Пример. Решить уравнение

 

Получаем

Находим значение определителя

Применяем подстановку

Подставляем это выражение в исходное уравнение:

 

Разделяем переменные:

Далее возвращаемся к первоначальной функции у и переменной х.

таким образом, мы получили общий интеграл исходного дифференциального уравнения.

 

 

Линейные уравнения.

 

Определение. Дифференциальное уравнение называется линейным относительно неизвестной функции и ее производной, если оно может быть записано в виде:

при этом, если правая часть Q(x) равна нулю, то такое уравнение называется линейным однороднымдифференциальным уравнением, если правая часть Q(x) не равна нулю, то такое уравнение называется линейным неоднороднымдифференциальным уравнением.

 

P(x) и Q(x)- функции непрерывные на некотором промежутке a < x < b.

 

 

Линейные однородные дифференциальные уравнения.

 

Рассмотрим методы нахождения общего решения линейного однородного дифференциального уравнения первого порядка вида

.

 

Для этого типа дифференциальных уравнений разделение переменных не представляет сложностей.

 

Общее решение:

 

Линейные неоднородные дифференциальные уравнения.

 

Для интегрирования линейных неоднородных уравнений (Q(x)¹0) применяются в основном два метода: метод Бернулли и метод Лагранжа.

 

Метод Бернулли.

(Якоб Бернулли (1654-1705) – швейцарский математик.)

 

Суть метода заключается в том, что искомая функция представляется в виде произведения двух функций .

При этом очевидно, что - дифференцирование по частям.

 

Подставляя в исходное уравнение, получаем:

Далее следует важное замечание – т.к. первоначальная функция была представлена нами в виде произведения, то каждый из сомножителей, входящих в это произведение, может быть произвольным, выбранным по нашему усмотрению.

Например, функция может быть представлена как

и т.п.

Таким образом, можно одну из составляющих произведение функций выбрать так, что выражение .

Таким образом, возможно получить функцию u, проинтегрировав, полученное соотношение как однородное дифференциальное уравнение по описанной выше схеме:

 

 

 

Для нахождения второй неизвестной функции v подставим поученное выражение для функции u в исходное уравнение с учетом того, что выражение, стоящее в скобках, равно нулю.

 

Интегрируя, можем найти функцию v:

; ;

Т.е. была получена вторая составляющая произведения , которое и определяет искомую функцию.

Подставляя полученные значения, получаем:

 

 

Окончательно получаем формулу:

, С2 - произвольный коэффициент.

Это соотношение может считаться решением неоднородного линейного дифференциального уравнения в общем виде по способу Бернулли.

 

Метод Лагранжа.

 

( Ларганж Жозеф Луи (1736-1813) - французский математик, през. Берлинской АН,

поч. чл. Пет. АН (1776)).

 

 

Метод Лагранжа решения неоднородных линейных дифференциальных уравнений еще называют методом вариации произвольной постоянной.

 

Вернемся к поставленной задаче:

 

Первый шаг данного метода состоит в отбрасывании правой части уравнения и замене ее нулем.

Далее находится решение получившегося однородного дифференциального уравнения:

.

Для того, чтобы найти соответствующее решение неоднородного дифференциального уравнения, будем считать постоянную С1 некоторой функцией от х.

Тогда по правилам дифференцирования произведения функций получаем:

 






Дата добавления: 2017-06-13; просмотров: 864; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2022 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.124 сек.