Кинетический момент системы материальных точек при сложном движении.


 

Главный момент количеств движения механической системы относительно неподвижного центра О для абсолютного движения системы равен векторной сумме момента вектора количество абсолютного движения системы (приложенного в центре масс) относительно того же центра, и главного момента количеств движения системы относительно центра масс для относительного движения системы по отношению к центру масс

.

(11) В проекции на ось OZ:

Введем подвижную систему координат CXYZ, которая двигается поступательно по отношению к инерциальной системе отсчета Оxyz и начало которой связано с центром масс С системы. Подвижную СК CXYZ называют кенинговой системой координат. продифференцируем по времени выражение

Тогда

Согласно формуле Бура

Но при поступательном движении системы CXYZ

Главный момент кол-ва движения мех. системы относительно неподвижного центра О для абсолютного движения системы относительно неподвижной (инерциальной) системы координат Oxyz равен

Подставляя сюда выражения для и

Здесь так как радиус-вектор центра масс относительно центра масс , а следовательно

Т.е. количество движения системы в её движении относительно центра масс равно нулю.

Таким образом:

(11)

Где - главный момент количеств движения мех. системы относительно центра масс для относительного движения системы по отношению к центру масс (по отношению к СК CXYZ, движущейся поступательно вместе с центром масс)

В проекции на ось Oz (CZ) формула (11) принимает вид

 



Дата добавления: 2021-07-22; просмотров: 388;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.