Понятие об устойчивости. Задача Эйлера
До сих пор мы рассматривали методы определения напряжений и перемещений, возникающих в стержнях и соответственно, занимались оценкой их прочности и жесткости. Однако оказывается, что соблюдение условий прочности и жесткости еще не гарантирует способности конструкций выполнять, предназначенные им функции в эксплуатационных режимах. Наряду с выполнением условий прочности и жесткости, необходимо обеспечить и устойчивость конструкций.
При неизменной схеме нагружения, под устойчивостью понимается свойство способности системы сохранять свое первоначальное равновесное состояние. Если рассматриваемая система таким свойством не обладает, то она называется неустойчивой, а ее равновесное состояние - неустойчивым состоянием.
При неизменной схеме нагружения, в процессе роста интенсивности нагрузок, явление перехода системы от одного равновесного состояния к другому равновесному состоянию, называется потерей устойчивости системы. Значения внешних сил, при которых происходит потеря устойчивости, называются критическими.
В некоторых случаях при потере устойчивости, система, переходя в новое устойчивое равновесное состояние, продолжает выполнять свои функции. Однако в подавляющем большинстве случаев, потеря устойчивости системы сопровождается возникновением больших перемещений, пластических деформаций или ее полным разрушением. Поэтому сохранение исходного (расчетного) равновесного состояния системы является важной задачей и одной из основных проблем сопротивления материалов.
Рис. 7.1 |
Основная задача теории устойчивости заключается в определении критического значения внешних сил и ограничение их величин таким образом, чтобы исключить возможность потери устойчивости заданной системы в эксплуатационных режимах.
Пусть вертикальный стержень закреплен нижним концом, а на свободном верхнем конце центрально приложена продольная сила Р (рис. 7.1). На начальном этапе нагружения равновесное состояние системы определяется как простое продольное сжатие, так как на данном этапе нагружения в поперечных сечениях стержня, за исключением продольной силы, остальные силовые факторы равны нулю. При дальнейшем росте внешней силы Р, обнаруживается, что при некотором ее значении P = PKP , стержень изогнется. Так как явление изгиба тесно связано с действием изгибающих моментов, возникающих в поперечных сечениях стержня, можем утверждать, что при P = PKP происходила смена формы равновесного состояния системы. Если на начальном этапе нагружения P < PKP , равновесное состояние вертикального стержня определялось как простое сжатие, то при P > PKP сжатие сопровождается изгибом. Это означает, что при P = PKP происходила потеря устойчивости системы.
Заметим, что в данном случае, смена формы равновесного состояния сопровождается и сменой формы деформирования: в докритическом - прямолинейная форма деформирования, в закритическом - криволинейная, а в критическом - смешанная форма.
Заметим также, что для гибких стержней потеря устойчивости может наступить при напряжениях, значительно меньших предела прочности материалов. Поэтому расчет стержней должен выполняться при условии, что сжимающие напряжения не превышают критического значения с точки зрения потери их устойчивости:
, (7.1)
где РKP - значение сжимающей силы, при котором стержень переходит из прямолинейного состояния равновесия к криволинейному; F - площадь сечения стержня.
Рис. 7.2 |
Изучение устойчивости стержней начнем с простейшей задачи о стержне с двумя шарнирно опертыми концами при действии центрально сжимающей силы Р (рис. 7.2).
Впервые эта задача была поставлена и решена Л.Эйлером в середине ХVIII века и носит его имя.
Рассмотрим условия, при которых происходит переход от центрально сжатого состояния к изогнутому, т.е. становится возможной криволинейная форма оси стержня при центрально приложенной сжимающей силе Р. Предполагая, что изгиб стержня будет происходить в плоскости минимальной жесткости, записывая дифференциальное уравнение упругой линии балки и ограничиваясь рассмотрением только малых перемещений, имеем:
(7.2)
Дата добавления: 2017-03-12; просмотров: 1221;