Решение обыкновенных дифференциальных уравнений (ОДУ).

 

К решению дифференциальных уравнений приводит большое число научно-исследовательских задач и задач инженерной практики, но лишь не многие из них удается решить аналитически, поэтому численные методы решения дифференциальных уравнений играют такую важную роль в инженерной практике.

Дифференциальные уравнения, содержащие одну независимую переменную и производные по ней, называются обыкновенными дифференциальными уравнениями.

Для решения дифференциального уравнения необходимо задание дополнительных условий, если дополнительные условия задаются при одном значении независимой переменной, то такие условия называются начальными, а задача решения уравнения называется задачей с начальными условиями или задача Коши.

Если условия задаются при двух или более значениях переменной, то такие условия называются граничными, а задачу называют краевой.

В задаче Коши роль независимой переменной играет величина (время), а дополнительное условие для начального момента времени ( ). В краевых задачах в качестве независимой переменной выступает координата отрезка, а граничные условия задаются в начале и конце отрезка.

Для решения задачи Коши и краевой принимают различные численные методы. Часто краевую задачу решают путем сведения её к задаче Коши. Отсюда следует, что обычно задачи Коши являются более легкими для численного решения.

При численном решении вводится шаг по координате, и решение находится в точках отстоящих друг от друга на величину шага. Для решения задачи Коши разработано множество методов, которые можно разделить на 2 группы:

1 группа – одношаговые методы.

В них для нахождения решения в следующей точке (удаленной на расстояние h) требуется информация лишь об одном предыдущем шаге.

2 группа – многошаговые методы.

Методы прогноза и коррекции.

В них для нахождения значения в следующей точке требуется информация из нескольких предыдущих точек.

При численном решении дифференциальных уравнений можно выделить 3 типа погрешности:

1)погрешность округления;

2)погрешность усечения, связана с аппроксимацией бесконечных рядов несколькими первыми членами, обусловлена численным методом;

3)погрешность распространения, она является результатом накопления погрешностей появившихся на предыдущих этапах счета.

 

Метод 28

Метод Эйлера.

Простейшим методом решения обыкновенного дифференциального уравнения первого порядка является метод Эйлера.

Требуется найти . Как зависит от .

Будем находить решение в точках отстоящих друг от друга на расстоянии h (шаг задачи). Допустим решение в точке известно, и требуется найти значение неизвестной в точке . Разложим решение в окрестности точки в ряд Тейлора:

В этом ряде ограничимся первыми двумя слагаемыми

 

В результате получаем простейшую формулу

, которая реализует метод Эйлера .

, ,

точность

 

погрешность на одном шаге.

Таким образом, погрешность метода Эйлера равна .

 

Метод 29






Дата добавления: 2017-03-12; просмотров: 827; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2019 год. Материал предоставляется для ознакомительных и учебных целей. | Обратная связь
Генерация страницы за: 0.006 сек.