Основной закон сопротивления воздуха


Рассматривая аэродинамические спектры плоской пластинки и каплевидного тела, можно установить, что

 

вследствие торможения перед телом скорость потока уменьшается, а давление увеличивается. Степень его увеличения зависит от формы передней части тела. Пе­ред плоской пластинкой давление больше, чем перед каплевидным телом. За телом, вследствие разрежения, давление уменьшается, при этом у плоской пластинки па большую величину по сравнению с каплевидным телом.

Таким образом, перед телом и за ним образуется разность давлений, в результате чего создается аэроди­намическая сила, называемая сопротивлением давления. Кроме этого, из-за трения воздуха в пограничном слое возникает аэродинамическая сила, которая называется сопротивлением трения.

При симметричном обтекании тела сопротивление

давления и сопротивление трения направлены в сторо­ну, противоположную движению тела, и вместе состав­ляют силу лобового сопротивления. Опытами установлено, что аэродинамическая сила зависит от скорости потока, массовой плотности возду­ха, формы и размеров тела, положения его в потоке и состояния поверхности. При повышении скорости набегающего потока его кинетическая энергия, которая пропорциональна квад-рату скорости, увеличивается. Поэтому при обтекании плоской пластины, направленной перпендикулярно по-току, с увеличением скорости давление в передней час-


ти ее возрастает, так как большая часть кинетической энергии потока при торможении переходит в потенци­альную энергию давления. При этом за пластинкой дав­ление еще больше уменьшается, так как из-за увеличе­ния инертности струи увеличивается протяженность области пониженного давления. Таким образом, при по­вышении скорости потока из-за увеличения разности дав­ления перед телом и за ним пропорционально квадрату скорости возрастает аэродинамическая сила сопротив­ления.

Ранее было установлено, что плотность воздуха ха­рактеризует инертность его: чем больше плотность, тем больше инертность. Для движения тела в более инерт­ном, а следовательно, в более плотном воздухе требует­ся приложить больше усилий для сдвига частиц возду­ха, а это значит, что и воздух будет с большей силой воздействовать на тело. Следовательно, чем выше плот­ность воздуха, тем больше аэродинамическая сила, дей­ствующая на движущееся тело.

В соответствии с законами механики величина аэро-динамической силы пропорциональна площади сечения тела, перпендикулярного к направлению действия дан­ной силы. Для большинства тел таким сечением явля­ется наибольшее поперечное сечение, называемое миде­лем, а для крыла — площадь его в плане.

Форма тела влияет на характер аэродинамического спектра (скорость струек, обтекающих данное тело), а следовательно, и на разность давлений, что определяет величину аэродинамической силы. При изменении поло­жения тела в воздушном потоке изменяется его спектр обтекания, что влечет за собой изменение величины и направления аэродинамических сил.

Тела, имеющие менее шероховатую поверхность, ис­пытывают меньшие силы трения, так как на большей части поверхности их пограничный слой имеет ламинар­ное течение, в котором сопротивление трения меньше, чем в турбулентном.

Таким образом, если влияние формы и положения
тела в потоке, степень обработки его поверхности учесть
поправочным коэффициентом, который называется аэро­
динамическим коэффициентом, то можно сделать вывод,
что аэродинамическая сила прямо пропорциональна сво-
ему коэффициенту, скоростному напору и площади ми-
деля тела (у крыла —его площади),


Если обозначить полную-аэродинамическую силу со­противления воздуха буквой R, аэродинамический коэф­фициент ее — скоростной напор — q, а площадь кры­ла— то формулу сопротивления воздуха можно запи­сать следующим обвазом:



 


 


атак как скоростной напор равен

иметь вид:


формула будет


Приведенная формула силы сопротивления воздуха шляется основной, так как по аналогичным ей форму-пай можно определить величину любой аэродинамиче-кой силы, заменив только обозначение силы и ее ко­эффициента.

Полная аэродинамическая сила и ее составляющая

Поскольку кривизна крыла сверху больше, чем сни-зу, то при встрече его с воздушным потоком согласно закону постоянства секундного расхода воздуха, мест­ная скорость обтекания крыла вверху больше, чем вни­зу, а у ребра атак она резко уменьшается и в отдельных точках падает до нуля. Согласно закону Бернулли пе­ред крылом и под ним возникает область повышенного давления; над крылом и за ним возникает область по­ниженного давления. Кроме того, вследствие вязкости воздуха. возникает сила, трения в пограничном слое. Кар-тина распределения давлений по профилю крыла зави­сит от положения крыла в воздушном потоке, для ха­рактеристики которого пользуются понятием «угол атаки».

Углом, атаки крыла (α) называется угол, заключен­ный между направлением хорды крыла и набегающим потоком воздуха или направлением вектора скорости по­лета, (рис. 11).

Распределение давления по профилю изображается и виде векторной диаграммы. Для ее построения вычер­чивают профиль крыла, размечают на нем точки, в ко-



торых измерялось давление, и от этих точек векторами откладывают величины избыточных давлений. Ноли в данной точке давление пониженное, то стрелку вектора направляют от профиля, если же давление повышенное, то к профилю. Концы векторов соединяют общей лини­ей. На рис. 12 изображена картина распределения дав­лений по профилю крыла на малых и больших углах атаки. Из нее видно, что наибольшее разрежение полу­чается на верхней поверхности крыла в месте макси­мального сужения струек. При угле атаки, равном ну­лю, наибольшее разрежение будет в месте наибольшей толщины профиля. Под крылом также происходит су­жение струек, в результате чего и там будет зона раз­режения, но меньшая, чем над крылом. Перед носком крыла — область повышенного давления.

При увеличении угла атаки зона разрежения смеща­ется к ребру атаки и значительно увеличивается. Это происходит потому, что место наибольшего сужения струек перемещается к ребру атаки. Под крылом час­тицы воздуха, встречая нижнюю поверхность крыла, притормаживаются, в результате чего давление повы­шается.

Каждый вектор избыточного давления, изображен­ный на диаграмме, представляет собой силу, действую­щую на единицу поверхности крыла, то есть каждая стрелка обозначает в определенном масштабе величину избыточного давления, или разность между местным давлением и давлением в невозмущенном потоке:

Просуммировав все векторы, можно получить аэро­динамическую силу без учета сил трения. Данная сила с учетом силы трения воздуха в пограничном слое сос­тавит полную аэродинамическую силу крыла. Таким образом, полная аэродинамическая сила (R) возникает ко причине разности давлений перед крылом и за ним, под крылом и над ним, а также в результате трения воздуха в пограничном слое.

Точка приложения полной аэродинамической силы находится на хорде крыла и называется центром дав­ления (ЦД). Поскольку полная аэродинамическая сила действует в сторону меньшего давления, то она будет направлена вверх и отклонена назад.

В соответствии с основным законом сопротивления

Рис. 13. Разложение полной аэродинамической силы крыла на сос­тавляющие

воздуха полная аэродинамическая сила выражается фор­мулой:

Полную аэродинамическую силу принято рассмат­ривать как геометрическую сумму двух составляющих: одна из них, У, перпендикулярная невозмущенному по­току, называется подъемной силой, а другая, Q, на­правленная противоположно движению крыла, называ­ется силой лобового сопротивления.

Каждую из этих сил можно рассматривать как алгеб­раическую сумму двух слагаемых: силы давления и си­лы трения. Для подъемной силы практически можно пренебречь вторым слагаемым и считать, что она явля­ется только силой давления. Сопротивление же нужно рассматривать как сумму сопротивления давления и сопротивления трения (рис. 13).

Угол, заключенный между векторами подъемной си­лы и полной аэродинамической силы, называется углом Качества (Θк).


Подъемная сила крыла

Подъемная сила (У) создается за счет разности средних давлений снизу и сверху крыла.

При обтекании несимметричного профиля скорость потока над крылом больше, чем под крылом, вследствие большей кривизны верхней поверхности крыла и, в со­ответствии с законом Бернулли, давление сверху оказы­вается меньше, чем снизу.

Если профиль крыла симметричный и угол атаки равен нулю, то обтекание является симметричным, дав­ление над крылом и под ним одинаковое и подъемной силы не возникает (рис. 14). Крыло симметричного про­филя создает подъемную силу только при отличном от нуля угле атаки.


После некоторых преобразований формула подъем­ ной силы будет иметь вид:


Отсюда следует, что величина подъемной силы рав­на произведению разности избыточных давлений под крылом (Ризб.нижн) и над ним (Ризб. верхн) на площадь крыла:

СY—коэффициент подъемной силы, который опре­деляется опытным путем при продувке крыла в аэроди­намической трубе. Величина его зависит: 1 — от формы крыла, которая принимает главное участие в создании подъемной силы; 2 — от угла атаки (ориентировка кры­ла относительно потока); 3 — от степени обработки крыла (отсутствие шероховатостей, целостность мате­риала и пр.).

Если по данным продувки крыла несимметричного профиля в аэродинамической трубе на различных уг­лах атаки построить график, то он будет выглядеть следующим образом (рис. 15).

Из него видно, что:

1. При некотором отрицательном значении угла ата­ки коэффициент подъемной силы равен нулю. Это угол аыки нулевой подъемной силы и обозначается он α0.

2. С увеличением угла атаки до некоторого значения



 


 



 


 


Рис. 14. Обтекание кры­ла дозвуковым потоком: а — спектр обтекания (пограничный слой не показан); б — распреде­ление давления (картина давления)

Рис. 15. График зависи­
мости коэффициента
подъемной силы и коэф­
фициента лобового со­
противления от угла
атаки.


Рис, 16. Срыв потока на закритических углах атаки: в точке А давление больше, чем в точке Б, а в точке В давление больше, чем в точках А и Б

коэффициент подъемной силы возрастает пропорцио­нально (по прямой линии), после некоторого значения угла атаки прирост коэффициента подъемной силы уменьшается, что объясняется образованием завихрений на верхней поверхности.

3. При определенном значении угла атаки коэффи­циент подъемной силы достигает максимального значе­ния. Этот угол называется критическим и обозначается αкр. Затем при дальнейшем увеличении угла атаки ко­эффициент подъемной силы уменьшается, что происходит из-за интенсивного срыва потока с крыла, вызванного движением пограничного слоя против движения основ­ного потока (рис. 16).

Диапазон эксплуатационных углов атаки составляют углы от α0 до αкр. На углах атаки, близких к критиче­ским, крыло не обладает достаточной устойчивостью и плохо управляется.



Дата добавления: 2017-01-26; просмотров: 7066;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.018 сек.