Фильтрационный поток от нагнетательной скважины к эксплуатационной
Пусть сток О1 и источник О2равно дебитны, т.е. имеют одинаковые по модулю массовые дебиты G. Расстояние между источником и стоком равно 2а. Исследуем поток от источника к стоку.
Проведём ось 0х через точки О1 и О2 таким образом, чтобы точка О1находилась от начала координат 0на расстоянии а1, а точка О2на расстоянии а2(рис. 4.3).
По формуле (4.2) определим потенциальную функцию потока. При этом учтем знаки дебитов: источник G 1= - G, а сток G 2= + G. После подстановки получим:
, (4.5)
где r1 и r2- расстояния любой точки пласта до стока и источника, соответственно.
Уравнение изобар (4.4) при этом будет иметь вид
(4.6)
и соответствует окружностям, центры которых расположены на оси 0х. Если поместим начало координат в центре какой-либо окружности семейства, то радиус данной окружности определится выражением
, (4.7)
а коэффициент . (4.8)
Подставляя С1в (4.7) найдем
. (4.9)
Из (4.9) видно, что a1 < R < a2или a1 > R > a2; следовательно, все окружности пересекают ось между стоком и источником, а значит, одна из особых точек находится внутри окружности данного радиуса R, другая - вне этой окружности. Точки О1 и О2, положения которых на прямой 0х определяются равенством (4.7), называются взаимо-симметричными относительно окружности радиуса R.
Допустим, что радиус R=¥,т.е. берём ту эквипотенциальную линию, которая является прямой. Из (4.7) следует, что в этом случае С1=1 и, как следует из (4.6), r1=r2 . Последнее равенство означает, что в числе эквипотенциальных линий есть прямая 0у,, которая делит расстояние между стоком и источником пополам и параллельна оси 0у (рис.4.3).
Итак, эквипотенциальные линии (изобары) при совместном действии одной эксплуатационной и одной нагнетательной скважин в неограниченном пласте представляют собой окружности, центры которых расположены на прямой, проходящей через центры скважин (рис.4.4).. Среди окружностей есть одна, имеющая бесконечно большой радиус - прямая, которая делит расстояние между скважинами и всю плоскость течения пополам. Половина всех окружностей конечного радиуса Rрасположена по одну сторону от этой прямой, остальные окружности - по другую.
Семейство линий тока ортогонально изобарам и, следовательно, в данном случае тоже окружности. Все линии тока проходят через сток и источник. Центры всех окружностей линий тока расположены на прямой, делящей расстояние между стоком и источником пополам (рис.4.4).
Решая, полученную систему уравнений, имеем
. (4.10)
Массовая скорость фильтрации в любой точке пласта М (рис.4.2) находится по правилу суперпозиции сложения векторов скорости от действия источника и стока
. (4.11)
Величина корня есть расстояние между источником и стоком 2аи, следовательно, формула (4.11) перепишется в виде
(4.12)
Для поддержания пластового давления часто используется нагнетание воды в пласт. Определим время движения частицы по кратчайшему пути между нагнетательной и эксплуатационной скважинами для однородной несжимаемой жидкости, т.е. по оси 0х. При жестководонапорном режиме решается при этом вопрос о времени, протекшем от начала закачки воды в пласт до начала её прорыва в эксплуатационную скважину.
Чтобы решить указанную задачу выразим скорость в (4.12) через производную расстояния по времени и, поместив начало координат в сток О1, проинтегрируем полученное уравнение по хот х0до х. Тогда время движения частицы от некоторой точки х0до точки х определится зависимостью
. (4.13)
Время обводнения Т, т.е. прохождения частицы расстояния О1О2 = 2а определится из (4.13), если принять х=0; х0=2а
, (4.14)
где m - пористость;Q- объёмный дебит.
Зная Т можно найти площадь обводнения w, приравнивая объёмы TQи mhw. Откуда
. (4.15)
Анализ формул (4.13) и (4.14) показывает, что расстояние, пройденное частицей за время Тот нагнетательной скважины до эксплуатационной, вдвое больше расстояния пройденного другой частицей за это же время в положительном направлении оси х.
Дата добавления: 2016-11-29; просмотров: 1559;