Размещения с повторениями

ЭЛЕМЕНТЫ КОМБИНАТОРИКИ

Для успешного решения задач с использованием классического определения вероятности необходимо знать основные правила и формулы комбинаторики.

Комбинаторика происходит от латинского слова ”combinatio” соединение.

Группы, составленные из каких-либо предметов, (безразлично каких, например, букв, цветных шаров, кубиков, чисел и т.п.), называются соединениями (комбинациями).

Предметы, из которых состоят соединения, называются элементами.

Различают три типа соединений: перестановки, размещения и сочетания.

 

Размещения

Размещениями из n элементов по m в каждом называются такие соединения, каждое из которых содержит m элементов, взятых из числа данных n элементов, и которые отличаются друг от друга либо самими элементами (хотя бы одним), либо лишь порядком их расположения.

Число размещений из n элементов по m в каждом обычно обозначается символом и вычисляется по формуле (1.1)[1]:

 

. (1.1)

 

Понятие факториала

Произведение n натуральных чисел от 1 до n обозначается сокращенно n!, то есть (читается: n факториал).

Например, .

Считается, что 0! = 1.

Используя понятие факториала, формулу (1.1) можно представить так:

, (1.2)

 

где .

Очевидно, что = n (при m=1) и = 1 (при m=0).

 

Размещения с повторениями

 

Размещение с повторениями из n элементов по m(m × n) элементов может содержать любой элемент сколько угодно раз от 1 до m включительно, или не содержать его совсем, то есть каждое размещение с повторениями из n элементов по m элементов может состоять не только из различных элементов, но из m каких угодно и как угодно повторяющихся элементов.

Соединения, отличающиеся друг от друга хотя бы порядком расположе­ния элементов, считаются различными размещениями.

Число размещений с повторениями из n элементов по m элементов будем обозначать символом (c повт.)

Можно доказать, что оно равно nm.

 

(1.3)

 

Сочетания

Сочетаниями из n элементов по m в каждом называются такие соединения, каждое из которых содержит m элементов, взятых из числа данных n элементов, и которые отличаются друг от друга по крайней мере одним элементом.

Число сочетаний из n элементов по m в каждом обозначается символом и вычисляется так:

где ,   (1.4)

 

или

где .   (1.5)

 

Свойства сочетаний:  





Дата добавления: 2016-10-26; просмотров: 2180; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2019 год. Материал предоставляется для ознакомительных и учебных целей. | Обратная связь
Генерация страницы за: 0.005 сек.