Решите следующие задачи.
1. Решите дифференциальные уравнения:
а) ; б) ; в) ;
г) ; д) ; е) .
2. Найдите решения задачи Коши:
а) в) д)
б) г)
Дифференциальное уравнение второго порядка, содержит:
1) независимую переменную ;
2) зависимую переменную (функцию);
3) первую и вторую производную функции
Решить дифференциальное уравнение – это значит, найти множество функций , которые удовлетворяют данному уравнению. Такое множество функций называется общим решением дифференциального уравнения.
2.Однородное ДУ второго порядка с постоянными коэффициентами имеет следующий вид:
, где и – константы (числа), а в правой части – строго ноль.
Для того чтобы решить данное ДУ, нужно составить так называемое характеристическое уравнение:
По какому принципу составлено характеристическое уравнение, отчётливо видно:
вместо второй производной записываем ;
вместо первой производной записываем просто «лямбду»;
вместо функции ничего не записываем.
– это обычное квадратное уравнение, которое предстоит решить.
Существуют три варианта развития событий.
Характеристическое уравнение имеет два различных действительных корня
Если характеристическое уравнение имеет два различных действительных корня , (т.е., если дискриминант ), то общее решение однородного уравнения выглядит так:
, где – константы.
Пример.Решить дифференциальное уравнение
Решение: составим и решим характеристическое уравнение:
,
Ответ: общее решение:
Дата добавления: 2021-01-26; просмотров: 357;