Генетические алгоритмы


Проблема использования для обучения сети алгоритма обратного распространения ошибки и оптимизации по методу наименьших квадратов состоит в том, что их применение может быть причиной останова оптимизационного процесса в точках локального минимума нелинейной целевой функции (критерия качества сети). Дело в том, что упомянутые методы основаны на вычислениях производных. Генетические алгоритмы − естественный отбор самого подходящего (выживает наиболее приспособленный!) − не требуют вычисления производных и являются стохастическими оптимизационными методами, поэтому менее склонны к останову оптимизационного процесса в локальных минимумах. Эти алгоритмы могут быть использованы для оптимизации, как структуры, так и параметров в нейронных сетях. Специальная область их применения связана с определением параметров нечетких функций принадлежности.

Генетические алгоритмы имитируют эволюцию популяций. Суть этих алгоритмов такова. В начале генерируют возможные различные решения, используя генератор случайных чисел. Затем происходит тестирование (оценка) этих возможных решений с точки зрения поставленной задачи оптимизации, т.е. определяется, насколько хорошее решение они обеспечивают. После чего часть лучших решений отбирается, а другие отсеваются (выживает наиболее приспособленный). Затем отобранные решения подвергаются процессам репродукции (размножения), скрещивания и мутации, чтобы создать новую генерацию (поколение, потомство) возможных решений, которая, как ожидаемо, будет более подходящей, чем предыдущая генерация. Наконец, создание и оценивание новых генераций продолжатся до тех пор, пока последующие поколения не будут давать более подходящих решений. Такой алгоритм поиска решений из широкого спектра возможных решений оказывается предпочтительнее с точки зрения окончательных результатов, чем обычно используемые алгоритмы. Платой является большой объем вычислений. Рассмотрим составные части генетического алгоритма.

1. Кодирование. Множество параметров для задачи оптимизации кодируется в последовательность бит. Например, точка с координатами (x,y)=(11, 6) может быть представлена как хромосома, которая имеет вид соединения двух битовых последовательностей

 

Каждая координата представлена геном из четырех бит. Могут быть использованы другие методы кодирования и могут быть предусмотрены меры для кодирования отрицательных чисел и чисел с плавающей запятой.

2. Вычисление функции приспособленности (соответствия). После генерации популяции хромосом вычисляется значение функции приспособленности (соответствия) для каждой из ее хромосом. Функция приспособленности определяется через целевую функцию путем ее инвертирования (целевая функция минимизируется, а функция приспособленности максимизируется). Для задач максимизации значение функции приспособленности i-го члена вычисляется как величина, обратная целевой функции в i-ой точке. Обычно применяют строго положительную целевую функцию. Другая возможная мера приспособленности использовать ранжирование (классификацию) членов популяции. В этом случае целевая функция может быть вычислена не очень точно при условии, если она обеспечивает правильное ранжирование.

3. Селекция. Алгоритм селекции выбирает из членов популяции (хромосом), какие из них должны принять участие в качестве родителей с целью создания потомства для следующего поколения. Обычно вероятность отбора хромосом для этой цели пропорциональна присущей им величине приспособленности. Основная идея отбора состоит в том, членам с приспособленностью выше средней позволить размножаться и тем самым заменить члены с величиной приспособленности ниже средней.

4. Скрещивание. Операторы скрещивания генерируют новые хромосомы, которые, надеются, сохранят хорошие свойства от предыдущей генерации. Операция скрещивания обычно применяется к выбранной паре родителей с вероятностью, равной скорости скрещивания. При одноточечном скрещивании точка скрещивания в генетическом коде выбирается случайным образом, и две хромосомы-родители обмениваются своими последовательностями бит, расположенными справа от этой точки. Возьмем для примера две хромосомы

 

 

 

Если точка скрещивания расположена между пятым и шестым битами, цифры, написанные курсивом обмениваются местами по вертикали. Две новых хромосомы будут выглядеть так

 

 

 

 

 

При двухточечном скрещивании выбираются две точки скрещивания и части последовательностей хромосом, расположенные между двумя этими точками, обмениваются местами. В результате такого обмена получают двух детей от этих родителей. Фактически родители переносят фрагменты своих собственных хромосом на хромосомы своих детей. При этом такие дети, надеются, способны превосходить по приспособленности своих родителей, если они получили хорошие гены от обоих родителей.

6. Мутация. Оператор мутации может создать самопроизвольно новые хромосомы. Самый распространенный метод перебрасывать биты из одного места хромосомы в другое с весьма небольшой вероятностью, определяемой скоростью мутации. Мутация предотвращает сходимость популяции к локальному минимуму. Скорость мутации должна быть невысокой, чтобы не потерять хорошие гены. Мутация обеспечивает защиту от слишком раннего завершения алгоритма (в случае выравнивания всех хромосом и целевой функции).

Заметим, что выше было дано только лишь общее описание основных черт генетического алгоритма. Конкретные его детали весьма отличаются от описанных выше.

Алгоритм. Пример простого генетического алгоритма для задачи максимизации состоит из следующих этапов.

1. Инициализировать популяцию с генерируемыми случайным образом особями и вычислить значение функции приспособленности для каждой особи.

2. а) Отобрать из популяции два члена с вероятностью, пропорциональной их степени приспособленности.

б) Осуществить скрещивание со скоростью, равной скорости скрещивания.

в) Осуществить мутацию со скоростью, равной скорости мутации.

г) Повторять этапы с а) до г) до тех пор, пока число членов не будет достаточно, чтобы сформировать следующее поколение.

3. Повторять этапы 2 и 3 до тех пор, пока не будут удовлетворяться условия останова алгоритма.

Если скорость мутации высокая (выше 0,1), эффективность алгоритма будет такая же плохая, как в случае использования слепого случайного поиска.

 



Дата добавления: 2021-01-11; просмотров: 411;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.