Выборка и способы ее записи. Графическое представление выборки

Математическая статистика – раздел математики, посвященный математическим методам систематизации, обработки и использования статистических данных для теоретических исследований и практических выводов.

Статистические данные – набор числовых значений, представленных в виде выборки из генеральной совокупности Г, являющейся отображением реального явления в числовое множество.

Математическая статистика не раздел теории вероятностей, а самостоятельная наука со своими понятиями, методами и способами исследования. Изучает как случайные, так и детерминированные явления на основе более или менее обширного статистического материала.

Образно говоря, теория вероятностей, зная все о генеральной совокупности, изучает состав ее выборок. Математическая статистика решает обратную задачу: по изучению состава отдельных выборок пытается получить как можно больше информации о генеральной совокупности.

Основными понятиями математической статистики являются «генеральная совокупность», «выборка», «эмпирическая функция распределения» и «параметры распределения».

Рассмотрим случайный эксперимент, который описывается одномерной случайной величиной x. Множество всех возможных значений случайной величины x будем называть генеральной совокупностью G. Осуществив n независимых повторений эксперимента, получим совокупность n значений случайной величины x, которые обозначим . Заметим, что среди этих чисел могут быть и равные.

Совокупность , , , , называется выборкой, а число элементов, входящих в выборку, - ее объемом.

Если провести другую серию из n независимых повторений этого же эксперимента, то получится, вообще говоря, уже другая выборка значений случайной величины x. Поэтому в теоретических исследованиях выборка n значений случайной величины x представляется случайным вектором , где , , - независимые случайные величины, заданные на одном и том же вероятностном пространстве и имеющие одну и ту же функцию распределения , причем - одно из возможных, заранее неизвестных, значений случайной величины x в i-ом повторении эксперимента.

Задачей исследования в математической статистике является построение математической модели случайного эксперимента, проверка адекватности модели изучаемому явлению и, в случае положительного ответа, прогнозирование появления события, как части явления. При построении математической модели предполагается, что выборка репрезентативна, то есть, любой элемент генеральной совокупности имеет одинаковую вероятность попасть в выборку.

К основным задачам математической статистики относятся: 1) оценка функции распределения; 2) оценка неизвестных параметров; 3) проверка априорных предположений или статистических гипотез.

Пусть задана выборка

.

Элементы выборки, представленные в порядке неубывания элементов, , причем , образуют вариационный ряд.

Размахом выборки называется величина равная разности наибольшего и наименьшего элементов выборки, то есть,

,

где .

Пусть в выборке k различных элементов . Числа , , называются вариантами или наблюдениями. Число появлений варианты называется абсолютной частотой , .

Варианты и соответствующие им абсолютные частоты можно представить в виде таблицы, называемой статистическим рядом распределения (простой статистической таблицей) абсолютных частот:

x
m

 

Если на плоскости построить точки ( ), , и соединить их отрезками прямых, то полученная ломанная называется полигоном абсолютных частот:

Если x - непрерывная случайная величина, то весь диапазон ее значений делят на k интервалов (длины которых определяют по формуле , ) и подсчитывают количество , , вариант, попавших в данный интервал. По абсолютным частотам каждого из интервалов находят относительные частоты , . Очевидно, .

Полученные интервалы и соответствующие относительные частоты записывают в виде таблицы, называемой интервальным статистическим рядом распределения (интервальной статистической таблицей):

x
w

 

Графическим представлением интервального статистического ряда является гистограмма:

Для ее построения по оси абсцисс откладывают интервалы и на каждом из них строят прямоугольники высотой , .

Площадь гистограммы равна 1. В теории вероятностей гистограмме соответствует график плотности распределения вероятностей.

Замечание. На основании гистограммы можно построить полигон частот. Для этого достаточно соединить середины верхних сторон прямоугольников отрезками прямых. В этом случае непрерывную случайную величину можно рассматривать как дискретную, эмпирические значения которой совпадают с координатами , .

 

Гистограмму и полигон частот используют для подбора модели распределения изучаемой случайной величины x.

Эмпирической функцией распределения называется относительная частота события ( ) в данной выборке значений случайной величины x, то есть, , где - число меньших x, - объем выборки.

В силу закона больших чисел эмпирическая функция распределения является оценкой подлинной функции распределения при , поэтому функция обладает свойствами в полнее аналогичными :

1) , ;

2) функция является неубывающей функцией;

3) если , то , если , то .

Функция - ступенчатая, возрастает скачками, которые соответствуют наблюдениям, и равны относительным частотам этих значений:

 






Дата добавления: 2016-07-27; просмотров: 4922; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2020 год. Материал предоставляется для ознакомительных и учебных целей. | Обратная связь
Генерация страницы за: 0.016 сек.