Модель общего равновесия Вальраса


В общем случае, спрос на товар является функцией цен всех других товаров, дохода и количества потребителей. При данном доходе и количестве потребителей функция спроса на товар является функцией цен всех т товаров:

QDi=Di(P1,...,Pi,...,Pm), i=1,2,...,т. (5.17)

На совершенно конкурентном рынке предложение товара также является функцией цен всех т товаров:

QSi=Si(P1,...,Pi,...,Pm), i = 1,2,.:,m. (5.18)

Тогда функция избыточного спроса(ED; excess demand — англ.) на товар может быть представлена как разность между функцией спроса и функцией предложения. Обозначим избыточный спрос на i-й товар EDi тогда

EDi(P1,…Pi,…Pm)= Di(P1,...P,i...Pm)-Si(Pl,...,Pi,...,Pm). (5.19)

Кривая избыточного спроса может быть построена посредством горизонтального вычитаниякривой предложения из кривой спроса (рис. 5.7).

Рис. 5.7. Кривая избыточного спроса

 

Функция избыточного спроса позволяет рассматривать предложение как отрицательный избыток спроса, а спрос — как положительный его избыток. Так, на рис. 5.7 участок кривой избыточного спроса, ED, левее оси цены характеризует величину отрицательного спроса, т. е. предложения, а правее — ее величину положительного спроса. В этой модели различие между спросом и предложением исчезает. Поэтому в число т товаров в функцию избыточного спроса можно включить не только все конечные товары, но и все факторы производства, а также и все другие товары вплоть до невоспроизводимых (например, предметы антиквариата). Тогда условием равновесия становится равенство избыточного спроса нулю:

EDi (P1,...,Pm) = 0. (5.20)

Переходя к общему равновесию, мы получим систему, содержащую т уравнений вида для т товаров. Однако не все эти уравнения являются независимыми. Для экономики в целом общая ценность покупок всегда равна общей ценности продаж, и, значит,

(5.21)

Равенство (5.21) интерпретируют обычно как закон Вальраса. Он утверждает, что если все рынки, кроме одного, т. е. т-1 рынков, находятся в равновесии, то и оставшийся (т-1)-й рынок также находится в равновесии. А это значит, что число независимых уравнений в системе равно т - 1.

В принципе решить систему, состоящую из т – 1 независимых уравнений, относительно т переменных невозможно. Однако число последних можно уменьшить на единицу, выбрав один товар в качестве единицы счета (фр. numeraire) и разделив все цены на Р1. Тогда (5.21) примет вид

. (5.22)

Пример условий равновесия для линейных функций спроса и предложения

Таким образом, мы получили систему, состоящую из т – 1 уравнения, допускающую единственное решение относительно - 1 )-й цены.

При функциях спроса и предложения

QD =A-aP и QS =В + bР

функцией избыточного спроса будет

ЕQ =(А-В)-(а + b)Р.

Для рынка двух товаров условие (5.20) имеет вид:

откуда, разделив первое уравнение на второе, получим

.

Приняв цену первого товара в качестве единицы счета, обозначим

.

Поэтому можно записать уравнение Вальраса (5.22):

(5.23)

Условие «расчистки рынка» (5.21) имеет следующий вид:

. (5.24)

Уравнения (5.23), (5.24) позволяют найти искомые цены товаров.

В принципе, система уравнений Вальраса имеет решение, если количество независимых уравнений равно числу неизвестных в системе. Однако равенство количества независимых уравнений числу неизвестных — это необходимое, но не достаточное условие решения системы уравнений общего равновесия.

Существование равновесия зависит от того, обеспечивает ли поведение субъектов рынка пересечение кривых спроса и предложения при положительной цене, его стабильность зависит от соотношения наклонов кривых спроса и предложения (наклон кривой спроса меньше наклона кривой предложения), а его единственность связана с наклоном кривой избыточного спроса, характеризующей разность между объемами спроса и предложения или любой положительной цене.



Дата добавления: 2020-10-25; просмотров: 396;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.011 сек.