Направленное регулирование скорости реакции в твердой фазе
Управление химическими реакциями в твердой фазе
Проблема управления реакционной способностью твердых веществ является одной из ключевых проблем современной химии твердого тела. На реакционную способность твердых веществ влияют внешние факторы (температура, состав окружающей среды, приложенная извне механическая нагрузка) и внутренние факторы, связанные с составом твердого вещества, его структурой и наличием в кристаллах дефектов.
Можно выделить разные виды управления реакционной способностью. В самом простом случае можно иметь в виду изменение скорости процесса (или выхода целевого продукта), не обращая внимания на топографию процесса (то есть на то, в каком месте происходит процесс). Это самый простой и распространенный способ направленного регулирования твердофазных реакций, используемый в промышленности и лаборатории. Более сложной является задача регулирования развития реакции в пространстве. Конечная цель такого регулирования - заставить реакцию протекать в том месте твердого тела, где мы этого хотим, и осуществлять контроль за процессом по ходу его развития в пространстве. Наконец, можно поставить задачу управления не только скоростью реакции или ее развитием в пространстве, но и механизмом самой химической реакции.
Все эти вопросы чрезвычайно актуальны и важны как для теории (поскольку кинетика химических реакций в твердых фазах до сих пор еще недостаточно исследована), так и для практики в связи с чрезвычайной важностью решения вопроса о направленном регулировании химических реакций в твердой фазе в современной технике.
Направленное регулирование скорости реакции в твердой фазе
Направленное регулирование скорости химических реакций обычно связано с изменением в твердом веществе числа потенциальных центров реакции. Эти центры характеризуются повышенной реакционной способностью и связаны с наличием в кристалле дефектов. Выяснению взаимосвязи между дефектами кристалла и реакционной способностью был посвящен ряд исследований. Показано, что характер влияния дефектов на скорость топохимических реакций в сильной степени зависит от механизма реакции. Так, например, реакции термического разложения можно разделить на две группы: 1) реакции, в которых разрыв связей происходит локально; 2) процессы, в которых требуется перенос заряда в решетке твердого вещества на расстояния много большие, чем межатомные. Оказалось, что на скорость реакций, относящихся к первой группе, влияют в основном дефекты, изменяющие соотношение между поверхностью и объемом кристалла или относительное число мест на поверхности, характеризуемых повышенной активностью (изменение габитуса кристалла, наличие различных дефектов поверхности, дислокаций и их группировок и т.д.). Если же элементарные стадии процесса включают перенос заряда в решетке (реакция относится ко второй группе), главное влияние на скорость начинают оказывать дефекты решетки. Это относится не только к реакциям термического разложения, но и к реакциям других типов.
Обнаруженная связь между характером влияния дефектов на реакционную способность и механизмом реакции может быть использована для решения задачи направленного регулирования. Если нам известен механизм процесса, то путем подбора способа получения кристаллов и различных методов их предварительной обработки можно изменять в кристалле концентрацию именно тех дефектов, к которым данная реакция в наибольшей степени чувствительна, и тем самым осуществлять направленное регулирование.
Если создать дефекты в кристалле механическим воздействием, то аппаратом, в котором будет проводиться механическая активация, должна быть не "обычная" мельница, а специальная машина, "активатор", которая позволяла бы изменять количество и скорость подведения к твердому веществу энергии, а также характер механического воздействия, определяемого соотношением между давлением и сдвигом, чтобы получить именно те дефекты, к которым данная реакция в наибольшей степени чувствительна. Их использование позволило резко интенсифицировать некоторые технологические процессы. Так, процесс получения пятиокиси ванадия из руды, занимавший ранее три последовательные шестичасовые операции спекания ванадиевой руды с содой, выщелачивания ванадата натрия с последующим превращением его в пятиокись, теперь удается проводить всего за 50 - 60 минут.
Экспериментальными исследованиями было показано, что, используя обработку в активаторе, удается перевести в растворимую в почвенных кислотах форму такие природные фосфорсодержащие соединения, как хибинские апатиты, фосфориты Каратау, апатиты Селигдарского месторождения, которые обычно становятся растворимыми только после обработки их серной или фосфорной кислотами. Повышение растворимости в этом случае связано не с тривиальным диспергированием, а с образованием в кристаллах апатита и фосфорита при их пластической деформации линейных дефектов кристалла - дислокаций.
Генерирование дефектов при механической активации можно использовать не только для разрушения твердого тела (при вскрытии руды или минерала), но и для созидания, проводя, таким образом, синтез органических и неорганических веществ. Метод механохимического синтеза может быть использован для малотоннажного органического синтеза. При этом удается сократить число операций при получении таких важных продуктов фармацевтической химии, как фталазол, нозепам. Кроме того, что очень важно с точки зрения экологической безопасности процесса и его экономических характеристик, можно резко сократить, а в ряде случаев и вообще избавиться от используемого в традиционных технологиях большого количества органических растворителей. Механохимический метод позволяет получать твердые растворы металлов с аномально повышенной концентрацией смешиваемых компонентов и так называемые "нанокомпозиты" - конгломераты частиц, в которых основная доля вещества приходится на межфазовую поверхность, разделяющую компоненты смеси, а также недавно обнаруженные соединения с дальним порядком, но без периодичности в структуре, так называемые икосаэдрические фазы, или квазикристаллы.
Варьируя концентрацию дефектов, можно не только увеличивать реакционную способность, но и понижать ее, когда это необходимо, например, в случае стабилизации неорганических солей.
Например: работы с перхлоратом аммония были начаты учеными в конце пятидесятых годов. Предполагалось, что перхлорат аммония при низких температурах распадается за счет переноса электрона с аниона на катион, а при высоких - за счет переноса протона с катиона на анион либо через отщепление кислорода от перхлорат-иона.
Поэтому исследования были начаты с выяснения механизма термического разложения на начальных стадиях процесса. Опыты с применением времяпролетной масс-спектрометрии и адиабатической калориметрии показали, что во всем интервале температур первичной стадией распада является переход протона от аммонийного иона к перхлоратному, причем стадии образования молекул аммиака и хлорной кислоты, десорбирующихся в окружающее пространство или реагирующих в поверхностном слое, обычно предшествует миграция протона по анионной подрешетке.
NH4+ + ClO4- ® NH3 + HClO4
В ходе миграции по анионной подрешетке протон может быть захвачен на дефекте, например, на дислокации, или на других ловушках - акцепторах протонов. Эта стадия, благодаря малой стабильности, образующейся при этом кислоты, является началом термического разложения.
HClO4 + ClO4- ® ClO4H + ClO4-
Особенно эффективны в качестве ловушек хлорат-ионы. Захват протонов хлорат-ионами и последующий распад хлорноватистой кислоты сопровождаются регенерацией протонных ловушек и, таким образом, приводят к автолокализации процесса.
ClO4H + ClO4- ® ClO4- + HClO4
Стадии, приводящие к локализации и автолокализации процесса, происходят, прежде всего, на линейных дефектах - дислокациях.
Из этих особенностей механизма вытекает и тактика управления термической стабильностью перхлората аммония, предложенная учеными. Для того, чтобы перхлорат можно было долго хранить, следует: а) избегать его механической деформации, поскольку это может вызвать появление дислокаций, а это акцепторы протонов; б) при получении перхлората по возможности лучше очищать его от примеси ионов; в) допировать перхлорат, вводя в его решетку примесные ионы, являющиеся стабильными акцепторами протонов, но в отличие от хлорат-иона не разлагающиеся затем с образованием новых протонных ловушек. Эти рекомендации были, затем подтверждены опытом.
Таким образом, детальное изучение механизма термического распада перхлората аммония позволило понять причины действия известных из патентной литературы добавок, стабилизирующих перхлорат аммония, и предложить новые эффективные методы его стабилизации. Установленная учеными связь между характером влияния дефектов и особенностями механизма химических реакций в твердой фазе может быть использована и для другой цели: на основании характера действия, оказываемого дефектами на ту или иную реакцию, можно получить существенную информацию, касающуюся механизма химических реакций в твердой фазе. Так был установлен механизм термического распада оксалатов и перманганатов на уровне элементарных стадий, а также получены важные сведения о механизме процессов, происходящих при механической обработке твердых веществ, действии на них ударной волны и в треках тяжелых заряженных частиц.
Несмотря на плодотворность такого подхода к решению проблемы направленного регулирования, очень скоро выяснилось, что он имеет недостатки. Успешно используемый для предсказания начальной стадии реакции метод становится неэффективным на последующих стадиях, поэтому наряду с факторами, связанными с локализацией процесса, приходится учитывать факторы, приводящие к автолокализации, то есть способности процесса регенерировать потенциальные центры реакции. Эти же факторы ответственны и за развитие реакции в пространстве.
Дата добавления: 2016-05-30; просмотров: 1378;